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Abstract 20 
 21 

Methane is a greenhouse gas emitted by a range of natural and anthropogenic sources. 22 
Atmospheric methane has been measured continuously from space since 2003, and new 23 
instruments are planned for launch in the near future that will greatly expand the capabilities of 24 
space-based observations.  We review the value of current, future, and proposed satellite 25 
observations to better quantify and understand methane emissions through inverse analyses, 26 
down to the scale of point sources and in combination with suborbital (surface and aircraft) data. 27 
Current observations from GOSAT are of high quality but have sparse spatial coverage. They 28 
provide limited information to quantify methane emissions on a regional (100-1000 km) scale. 29 
TROPOMI to be launched in late 2016 is expected to quantify daily emissions on the regional 30 
scale and will also effectively detect large point sources. Future satellite instruments with much 31 
higher spatial resolution, such as the recently launched GHGSat with 50 × 50 m2 resolution over 32 
targeted viewing domains, have the potential to detect a wide range of methane point sources. 33 
Geostationary observation of methane, still in the proposal stage, will have unique capability for 34 
mapping source regions with high resolution while also detecting transient “super-emitter” point 35 
sources. Exploiting the rapidly expanding satellite measurement capabilities to quantify methane 36 
emissions requires a parallel effort to construct high-quality spatially and sectorally resolved 37 
emission inventories. Partnership between top-down inverse analyses of atmospheric data and 38 
bottom-up construction of emission inventories is crucial to better understand methane emission 39 
processes and from there to inform climate policy.  40 
 41 

  42 
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1. Introduction 43 

 44 
Methane is a greenhouse gas emitted by anthropogenic sources including livestock, 45 

oil/gas systems, landfills, coal mines, wastewater management, and rice cultivation. Wetlands are 46 
the dominant natural source.  The atmospheric concentration of methane has risen from 720 to 47 
1800 ppb since pre-industrial times (Hartmann et al., 2013). The resulting radiative forcing on an 48 
emission basis is 0.97 W m-2, compared to 1.68 W m-2 for CO2 (Myhre et al., 2013). The present-49 
day global emission of methane is well-known to be 550 ± 60 Tg a-1, as inferred from mass 50 
balance with the global methane sink from oxidation by OH radicals (Prather et al., 2012). 51 
However, the contributions from different source sectors and source regions are highly uncertain 52 
(Dlugokencky et al., 2011; Kirschke et al., 2013). Emission inventories used for climate policy 53 
rely on “bottom-up” estimates of activity rates and emission factors for individual source 54 
processes. “Top-down” information from observations of atmospheric methane is often at odds 55 
with these estimates (Brandt et al., 2014). Satellite observations of atmospheric concentrations 56 
have emerged over the past decade as a promising resource to monitor emissions of various 57 
gases (Streets et al., 2013).  Here we review present, near-future, and proposed satellite 58 
observations of atmospheric methane and assess their value for quantifying emissions, down to 59 
the scale of individual point sources.  60 

The United Nations Framework Convention on Climate Change (UNFCCC) requires 61 
individual countries to report their annual national greenhouse gas emissions following bottom-62 
up inventory guidelines from the International Panel on Climate Change (IPCC, 2006). The 2015 63 
Paris Agreement further requires countries to develop plans for reducing greenhouse gas 64 
emissions. Reducing methane emissions is a major target of US climate policy (President’s 65 
Action Plan, 2014). Figure 1 shows the US anthropogenic methane emission inventory for 2012 66 
compiled by the Environmental Protection Agency (EPA, 2016) and reported to the UNFCCC.  67 
The inventory uses advanced IPCC Tier 2/3 methods (IPCC, 2006) and provides detailed sector 68 
information.  However, atmospheric observations from surface sites and aircraft suggest that US 69 
emissions are about 50% higher, and that sources from natural gas and livestock are likely 70 
responsible for the underestimate (Miller et al., 2013; Brandt et al., 2014). Emissions from 71 
natural gas can take place at all points along the supply chain from production to distribution. A 72 
small population of highly-emitting sources (the so-called “super-emitters”) associated with 73 
faulty equipment or episodic venting may contribute disproportionately to total emissions 74 
(Marchese et al., 2015; Mitchell et al., 2015; Zavala-Araiza et al., 2015). 75 

Atmospheric observations offer a test of emission inventories. Targeted local 76 
measurements of atmospheric methane can quantify emissions on small scales (point source, 77 
urban area, oil/gas basin) by measuring the ratio of methane to a co-emitted species whose 78 
emission is known (Wennberg et al., 2012) or by using a simple mass balance approach (Karion 79 
et al., 2013, 2015; Peischl et al., 2013, 2016; Conley et al., 2016). Quantifying emissions on 80 
larger scales, with many contributing sources, requires a more general approach where an 81 
ensemble of atmospheric observations is fit to a 2-D field of emissions by inversion of a 3-D 82 
chemical transport model (CTM) that relates emissions to atmospheric concentrations. This 83 
inversion is usually done by Bayesian optimization accounting for errors in the CTM, in the 84 
observations, and in the prior knowledge expressed by the bottom-up inventory. We obtain from 85 
the inversion a statistically optimized emission field, and differences with the bottom-up 86 
inventory point to areas where better understanding of processes is needed. A large number of 87 
inverse studies have used surface and aircraft observations to quantify methane emissions on 88 

2 
 

Atmos. Chem. Phys. Discuss., doi:10.5194/acp-2016-555, 2016
Manuscript under review for journal Atmos. Chem. Phys.
Published: 28 June 2016
c© Author(s) 2016. CC-BY 3.0 License.



regional to global scales (Bergamaschi et al., 2005; Bousquet et al., 2011; Miller et al., 2013; 89 
Bruhwiler et al., 2014).   90 

Satellites provide global, dense, and continuous data that are particularly well suited for 91 
inverse analyses. Measurement of methane from space began with the IMG thermal infrared 92 
instrument in 1996-1997 (Clerbaux et al., 2003). Measurement of total methane columns by solar 93 
backscatter began with SCIAMACHY in 2003-2012 (Frankenberg et al., 2006) and continues to 94 
the present with GOSAT launched in 2009 (Kuze et al., 2016). Satellite measurements of 95 
atmospheric methane have been used to detect emission hotspots (Worden et al., 2012; Kort et 96 
al., 2014; Marais et al., 2014) and to estimate emission trends (Schneising et al., 2014; Turner et 97 
al., 2016). They have been used in global inverse analyses to estimate emissions on regional 98 
scales (Bergamaschi et al., 2007, 2009, 2013; Monteil et al., 2013; Cressot et al., 2014; Wecht et 99 
al., 2014a; Alexe et al., 2015; Turner et al, 2015). The TROPOMI instrument scheduled for 100 
launch in late 2016 will vastly expand the capability to observe methane from space by providing 101 
complete daily global coverage with 7×7 km2 resolution (Veefkind et al., 2012; Butz et al., 102 
2012). The GHGSat instrument launched on a microsatellite in June 2016 by a private company 103 
(GHGSat, Inc.) has 50 × 50 m2 pixel resolution over targeted viewing domains that may allow 104 
detection of a wide range of methane point sources. GOSAT-2, a successor of GOSAT featuring 105 
higher precision, is scheduled for launch in 2018. Additional instruments are in the planned or 106 
proposed stage. As the demand for global monitoring of methane emissions grows, it is timely to 107 
review the capabilities and limitations of present and future satellite observations. 108 

 109 
2. Observing methane from space 110 

2.1 Instruments and retrievals 111 

Table 1 list the principal instruments (past, current, planned, proposed) measuring 112 
methane from space. Atmospheric methane is detectable by its absorption of radiation in the 113 
shortwave infrared (SWIR) at 1.65 and 2.3 µm, and in the thermal infrared (TIR) around 8 µm.  114 
Figure 2 shows different satellite instrument configurations. SWIR instruments measure solar 115 
radiation backscattered by the Earth and its atmosphere. The MERLIN lidar instrument will emit 116 
its own SWIR radiation and detect methane in the back-scattered laser signal. TIR instruments 117 
measure blackbody terrestrial radiation absorbed and re-emitted by the atmosphere. They can 118 
operate in the nadir as shown in Fig. 2, measuring upwelling radiation, or in the limb by 119 
measuring slantwise through the atmosphere. Solar occultation instruments (not shown in Fig. 2) 120 
stare at the Sun through the atmosphere as the orbiting satellite experiences sunrises and sunsets.  121 
Limb and solar occultation instruments detect methane in the stratosphere and upper troposphere, 122 
but not at lower altitudes because of cloud interferences. They are not listed in Table 1 but are 123 
referenced in Sect. 3.2 for measuring stratospheric methane. 124 

All instruments launched to date have been in polar sun-synchronous low Earth orbit 125 
(LEO), circling the globe at fixed local times of day. They detect methane in the nadir along the 126 
orbit track, and most also observe off-nadir (at a cross-track angle) for additional coverage. 127 
Unlike other instruments, GHGSat focuses not on global coverage but on specific targets with 128 
very fine pixel resolution and limited viewing domains.  Geostationary instruments still at the 129 
proposal stage would allow a combination of high spatial and temporal resolution over 130 
continental-scale domains, and could observe either in the SWIR or in the TIR following the 131 
configurations of Fig. 2. 132 
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Figure 3 shows typical vertical sensitivities for instruments in the SWIR and TIR. 133 
Instrument sensitivity extending down to the surface is desirable to infer methane emissions. 134 
This is achieved in the SWIR, where the atmosphere is nearly transparent unless clouds are 135 
present (Frankenberg et al., 2005). SWIR instruments thus measure the total atmospheric column 136 
of methane, with no vertical resolution. Measurements in the TIR require a thermal difference 137 
between the atmosphere and the surface (T1 vs. To in Fig. 2) and this limits their sensitivity to the 138 
middle and upper troposphere.   139 

Figure 4 shows the atmospheric optical depths of different gases in the SWIR, 140 
highlighting the methane absorption bands at 1.65 µm and 2.3 µm. All solar backscatter 141 
instruments so far have operated at 1.65 µm but TROPOMI will operate at 2.3 µm.  GOSAT-2 142 
will operate at both. SCIAMACHY was intended to operate at 2.3 µm and some retrievals were 143 
done in that band (Gloudemans et al., 2008) but an ice layer on the detector decreased 144 
performance and the operational retrievals were done at 1.65 µm instead. The 2.3 µm band is 145 
stronger, as shown in Fig. 3, and also allows retrieval of carbon monoxide (CO) which is of 146 
interest as an air pollutant and tracer of transport (Worden et al., 2010). However, solar radiation 147 
is 3 times weaker at 2.3 than at 1.65 µm. The 1.65 µm band has the advantage that CO2 can also 148 
be retrieved, which greatly facilitates the methane retrieval as described below.   149 

Methane retrievals at either 1.65 or 2.3 µm fit the reflected solar spectrum measured by 150 
the satellite to a modeled spectrum in order to derive the total vertical column density  Ω 151 
[molecules cm-2] of methane, taking into account the viewing geometry and often including a 152 
prior estimate to regularize the retrieval (Frankenberg et al., 2006; Schepers et al., 2012): 153 

 154 
 ˆ ( )T

A AΩ = Ω + −a ω ω   (1) 155 
 156 
Here Ω̂  is the retrieved vertical column density, ΩA is the prior best estimate assumed in the 157 
retrieval, ωA is a vector of prior estimates of partial columns [molecules cm-2] at successive 158 
altitudes summing up to ΩA, and  ω is the vector of true values for these partial columns. The 159 
column averaging kernel vector a expresses the sensitivity of the measurement as a function of 160 
altitude (Fig. 3), and is the reduced expression of an averaging kernel matrix that describes the 161 
ability of the retrieval to fit not only ω but other atmospheric and spectroscopic variables as well 162 
(Frankenberg et al., 2005; Schepers et al., 2012). The elements of a have values near unity 163 
through the depth of the troposphere at either 1.65 or 2.3 µm, meaning that SWIR instruments 164 
are sensitive to the full column of methane and that the prior estimates do not contribute 165 
significantly to the retrieved columns.  166 
             The viewing geometry of the satellite measurement is defined by the solar zenith angle θ 167 
and the satellite viewing angle θv (Fig. 2). This defines a geometric air mass factor (cos-1θ + cos-168 
1θv) for the slant column path of the solar radiation propagating through the atmosphere and 169 
reflected to the satellite. Division by this air mass factor converts the slant column obtained by 170 
fitting the backscattered spectrum to the actual vertical column, assuming that the incident and 171 
reflected solar beams sample the same methane concentrations. This assumption is safe for pixel 172 
sizes larger than 1 km but breaks down when observing methane plumes at smaller pixel sizes, as 173 
discussed in Sect. 4. 174 

The methane vertical column density Ω is sensitive to changes in surface pressure from 175 
topography and weather, affecting the total amount of air in the column. This dependence can be 176 
removed by converting Ω to a dry-air column-average mole fraction X = Ω/Ωa (also called 177 
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column-average mixing ratio) where Ωa  is the vertical column density of dry air as determined 178 
from the local surface pressure and humidity.  X is a preferred measure of the methane 179 
concentration because it is insensitive to changes in pressure and humidity.  180 

Solar backscatter measurements in the SWIR require a reflective surface. This largely 181 
limits the measurements to land, although some ocean data can be obtained from specular 182 
reflection at the ocean surface (sunglint). Clouds interfere with the measurement, reflecting solar 183 
radiation back to space and preventing detection of the air below the cloud while also affecting 184 
the accuracy of the retrievals. Even partly cloudy scenes are problematic because the radiation 185 
from the highly reflective cloudy fraction contributes disproportionately to the total 186 
backscattered radiation from the pixel. An important advantage of finer pixel resolution is to 187 
increase the probability of clear-sky scenes (Remer et al., 2012). The GOSAT retrievals exclude 188 
cloudy scenes by using a simultaneous retrieval of the oxygen column in the 0.76 µm A-band. A 189 
low oxygen column indicates the presence of cloud. For SCIAMACHY this is impractical 190 
because the pixel resolution is so coarse (30×60 km2) that a clear-sky requirement would exclude 191 
too much data; instead the retrieval allows for partly cloudy scenes (Frankenberg et al., 2006).  192 
The fraction of successful retrievals is 17% for GOSAT (Parker et al. (2011) retrieval) and 9% 193 
for SCIAMACHY (Frankenberg et al. (2011) retrieval), largely limited by cloud cover. 194 
TROPOMI retrievals will exclude cloudy scenes by using cloud observations from the VIIRS 195 
solar backscatter instrument flying in formation and viewing the same scenes at fine pixel 196 
resolution (Veefkind et al., 2012).  197 

Two different methods have been used for methane retrievals at 1.65 µm (SCIAMACHY, 198 
GOSAT): the CO2 proxy method (Frankenberg et al., 2005) and the full-physics method (Butz et 199 
al., 2010). In the full-physics method, the scattering properties of the surface and the atmosphere 200 
are fitted as part of the retrieval, using additional fitting variables to describe the scattering. In 201 
the CO2 proxy method, the spectral fit for methane ignores atmospheric scattering, and the 202 
resulting methane column is subsequently corrected for scattering by using a separate retrieval of 203 
CO2 (also ignoring atmospheric scattering) in its nearby 1.6 µm absorption band as shown in Fig. 204 
4. This assumes that atmospheric scattering affects the light paths for methane and CO2 retrievals 205 
in the same way (since the wavelengths are nearby and absorption strengths are similar). It also 206 
assumes that the dry-air column mole fraction of CO2 is known (it is far less variable than for 207 
methane). The dry-air column mole fraction of methane is then obtained by scaling to the CO2 208 
retrieval: 209 

 210 

 4
4 2

2

CH
CH CO

CO

X X
 Ω

=  Ω 
  (2) 211 

 212 
Here XCO2  is taken from independent information such as the CarbonTracker data assimilation 213 
product (Peters et al., 2007) or a multi-model ensemble (Parker et al., 2015). An advantage of the 214 
CO2 proxy method is that it corrects for instrument biases affecting both methane and CO2. A 215 
drawback is that errors in XCO2 propagate to XCH4. Comparisons of retrievals using the full-216 
physics and CO2 proxy methods show that they are of comparable quality (Buchwitz et al., 2015) 217 
but the CO2 proxy method is much more computationally efficient (Schepers et al., 2012). The 218 
CO2 proxy method can be problematic for methane plumes with joint enhancements of CO2, 219 
such as from megacities or open fires, that would not be resolved in the independent information 220 
for XCO2. 221 
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 Figure 5 shows the global and US distributions of methane (XCH4) observed by 222 
SCIAMACHY (2003-2004) and GOSAT (2010-2013). We focus on 2003-2004 for 223 
SCIAMACHY because of radiation-induced detector degradation after 2005 (Kleipool et al., 224 
2007). Global methane concentrations increased by 30 ppb from 2003-2004 to 2010-2013 225 
(Hartmann et al., 2013), and the colorscale in Fig. 5 is correspondingly shifted to facilitate 226 
pattern comparisons.  Observations are mainly restricted to land but GOSAT also observes 227 
sunglint over the oceans. SCIAMACHY provides full global mapping, while GOSAT observes 228 
only at selected pixel locations leaving gaps between pixels. Low values of XCH4 over elevated 229 
terrain (Greenland, Himalayas, US Intermountain West) reflect a larger relative contribution of 230 
the stratosphere (with lower methane) to the total atmospheric column. SCIAMACHY has 231 
positive biases over the Sahara and at high latitudes (Sect. 2.2). 232 

The SCIAMACHY and GOSAT global distributions show commonality in patterns. 233 
Values are highest in East Asia, consistent with the Emissions Database for Global Atmospheric 234 
Research (EDGAR) inventory (European Commission, 2011), where the dominant contributions 235 
are from rice cultivation, livestock, and coal mining. Values are also high over central Africa and 236 
northern South America because of wetlands and livestock. Over the US, both SCIAMACHY 237 
and GOSAT feature high values in the South-Central US (oil/gas, livestock) and hotspots in the 238 
Central Valley of California and in eastern North Carolina (livestock). There are also high values 239 
in the Midwest that are less consistent between the two sensors and might reflect a combination 240 
of oil/gas, livestock, and coal mining sources.  241 

TROPOMI will observe methane in the 2.3 µm band in order to also retrieve CO. The 242 
proposed geostationary instruments of Table 1 also target the 2.3 µm band in order to track CO 243 
plumes. Retrieval at 2.3 µm does not allow the CO2 proxy method because no neighboring CO2 244 
band is available in that part of the spectrum (Fig. 4). Retrievals of methane from TROPOMI 245 
will therefore rely on the full-physics method.  The operational retrieval for TROPOMI is 246 
described by Butz et al. (2012), who find that the precision error is almost always better than 1% 247 
and that over 90% of cloud-free scenes can be successfully retrieved. Observations of methane-248 
CO correlations from joint 2.3 µm retrievals may provide useful additional information for 249 
inferring methane sources (Xiao et al., 2004; Wang et al., 2009; Worden et al., 2013). 250 

Observations of methane in the TIR are available from the IMG, AIRS, TES, IASI, and 251 
CrIS instruments (Table 1). These instruments observe the temperature-dependent blackbody 252 
radiation emitted by the Earth and its atmosphere. Atmospheric methane absorbs upwelling 253 
radiation in a number of bands around 8 µm and re-emits it at a colder temperature. The methane 254 
concentration is retrieved from the temperature contrast. TIR instruments have little sensitivity to 255 
the lower troposphere because of insufficient temperature contrast with the surface, as illustrated 256 
in Fig. 3. This makes them less useful for detecting local/regional methane emissions. On the 257 
other hand, they observe both day and night, over land and ocean, and provide concurrent 258 
retrievals of other trace gases that can be correlated with methane such as CO and ammonia. 259 
Worden et al. (2013) showed that TIR measurements can be particularly effective at quantifying 260 
methane emissions from open fires, because aerosol interference is negligible in the TIR and 261 
concurrent retrieval of CO allows inference of the methane/CO emission factor.  262 

Multispectral retrievals in the SWIR and TIR combine the advantages of both approaches 263 
and provide some vertical profile information, as demonstrated by Herbin et al. (2013) using the 264 
combination of SWIR and TIR data from GOSAT, and by Worden et al. (2015) using the 265 
combination of SWIR from GOSAT and TIR from TES. This could enable separation between 266 
the local/regional methane enhancement near the surface and the higher-altitude methane 267 
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background (Bousserez et al., 2015). Such multi-spectral retrievals are not yet produced 268 
operationally because of computational requirements and because of limitations in the quality 269 
and calibration of spectra across different detectors (Hervé Herbin, personal communication). 270 

The MERLIN lidar instrument scheduled for launch in 2020 (Kiemle et al., 2011) will 271 
measure methane in the pencil of 1.65 µm radiation emitted by a laser along the satellite track 272 
and reflected directly back to the satellite. It will observe the full vertical column of methane 273 
during day and night, over both land and oceans, and will have unique capability for observing 274 
high latitudes during the dark season. By measuring only the direct reflected radiation it will not 275 
be affected by scattering errors, unlike the passive SWIR instruments, and cloud interferences 276 
willl be minimized. Kiemle et al. (2014) show that monthly and spatial averaging of the 277 
MERLIN data on a 50 × 50 km2 grid should provide global mapping of methane concentrations 278 
with 1% precision.  279 

Other instruments in Table 1 are presently at the proposal stage. All use solar backscatter. 280 
CarbonSat (Buchwitz et al., 2013) is designed to measure methane globally with an 281 
unprecedented combination of fine pixel resolution (2 × 2 km2) and high precision (0.4%). It was 282 
a finalist for the ESA’s Earth Explorer Program in 2015 but was not selected.  GEO-CAPE 283 
(Fishman et al., 2012), GeoFTS (Xi et al., 2015), and geoCARB (Polonsky et al., 2014) are 284 
geostationary instruments for methane that have been proposed to NASA but so far without 285 
success. Geostationary capabilities are discussed further in Sect. 4. 286 

 287 
2.2 Error characterization 288 

Satellite observations require careful error characterization for use in inverse analyses. 289 
Errors may arise from light collection by the instrument, dark current, spectroscopic data, the 290 
radiative transfer model, cloud contamination, and other factors. Kuze et al. (2016) give a 291 
detailed description of GOSAT instrument errors as informed by 5 years of operation. Errors 292 
may be random, such as from photon count statistics, or systematic, such as from inaccurate 293 
spectroscopic data. They may increase with time due to instrument degradation. 294 

Random error (precision) and systematic error (accuracy) have very different impacts 295 
(Kulawik et al., 2016). Random error can be reduced by repeated observations and averaging. As 296 
we will illustrate in Sect. 4, instrument precision can define the extent of spatial/temporal 297 
averaging required for satellite observations to usefully quantify emissions. Systematic error, on 298 
the other hand, is irreducible and propagates in the inversion to cause a corresponding bias in the 299 
emission estimates. A uniform global bias is not problematic for methane since the global mean 300 
concentration is well known from surface observations, but a spatially variable bias affects 301 
source attribution by aliasing the methane enhancements relative to background.  Buchwitz et al. 302 
(2015) refer to this spatial variability in the bias as “relative bias”. It can arise for example from 303 
different surface reflectivities, aerosol interference, sloping terrain, or unresolved variability in 304 
CO2 columns when using the CO2 proxy method (Schepers et al., 2012; Alexe et al., 2015). 305 
Buchwitz et al. (2015) estimate threshold requirements of 34 ppb single-observation precision 306 
and 10 ppb relative bias for solar backscatter satellite observations to be useful in inversions of 307 
methane emissions on regional scales.  308 

Validation of satellite data requires highly accurate suborbital observations of methane 309 
from surface sites, aircraft, or balloons. Direct validation involves comparison of single-scene 310 
satellite retrievals to suborbital observations of that same scene. The suborbital observations 311 
must be collocated in space and time with the satellite overpass, and they must provide a full 312 
characterization of the column as observed by the satellite. Although direct validation is by far 313 

7 
 

Atmos. Chem. Phys. Discuss., doi:10.5194/acp-2016-555, 2016
Manuscript under review for journal Atmos. Chem. Phys.
Published: 28 June 2016
c© Author(s) 2016. CC-BY 3.0 License.



the preferred means of validation, the requirements greatly limit the conditions under which it 314 
can be done. Indirect validation is a complementary method that involves diagnosing the 315 
consistency between satellite and suborbital data when compared to a global 3-D CTM as a 316 
common intercomparison platform (Zhang et al., 2010).  It considerably increases the range of 317 
suborbital measurements that can be used because collocation in space and time is not required. 318 
Indirect validation can also be conducted formally by chemical data assimilation of the different 319 
observational data streams into the CTM. 320 

The standard benchmark for direct validation of solar backscatter satellite observations is 321 
the worldwide Total Carbon Column Observing Network (TCCON) (Wunch et al., 2011). 322 
TCCON consists of ground-based Fourier Transform Spectrometer (FTS) instruments staring at 323 
the Sun and detecting methane absorption in the direct solar radiation spectrum. This measures 324 
the same dry-air column mole fraction XCH4 as the satellite but with much better signal-to-noise 325 
and a well-defined light path. The TCCON retrieval of methane is calibrated to the World 326 
Meteorological Organization (WMO) scale and has been validated by comparison to aircraft 327 
profiles (Wunch et al., 2011). The single-observation precision and bias for XCH4 are both about 4 328 
ppb (Buchwitz et al., 2015).  329 

Dils et al. (2014) and Buchwitz et al. (2015) present direct validation of the different 330 
operational SCIAMACHY and GOSAT retrievals using TCCON data. Relative bias is 331 
determined using pairs of TCCON sites. They find a single-observation precision of 30 ppb and 332 
relative bias of 4-13 ppb for SCIAMACHY in 2003-2005, good enough for inverse applications, 333 
but worsening after 2005 to 50-82 ppb (precision) and 15 ppb (relative bias). For GOSAT, they 334 
report single-observation precisions of 12-13 ppb for the CO2 proxy products and 15-16 ppb for 335 
the full-physics products. Relative biases for GOSAT are 2-3 ppb for the CO2 proxy products 336 
and 3-8 ppb for the full-physics products. Thus the GOSAT data are of high quality for use in 337 
inversions. The CO2 proxy retrievals provide a much higher density of observations than the full-338 
physics retrievals, so that random errors can be effectively decreased and the precision improved 339 
through temporal averaging. 340 

TIR measurements are most sensitive to the middle/upper troposphere (Fig. 3) and 341 
aircraft vertical profiles provide the best resource for direct validation. Wecht et al. (2012) and 342 
Alvarado et al. (2015) evaluated successive versions of TES methane retrievals with data from 343 
the HIPPO pole-to-pole aircraft campaigns over the Pacific (Wofsy, 2011). Alvarado et al. 344 
(2015) report that the latest Version 6 of the TES product has a relatively large bias when 345 
attempting to retrieve two pieces of information in the vertical but a bias of only 4.8 ppb when 346 
retrieving just one piece of information.  Crevoisier et al. (2011) found that IASI observations 347 
are consistent with aircraft observations to within 5 ppb. 348 

Use of satellite observations in inverse modeling studies cannot simply rely on past 349 
validation to quantify the instrument error. This is because the instrument calibration may drift 350 
with time, optics and detectors may degrade, and errors may vary depending on surface and 351 
atmospheric conditions. It is essential that error characterization be done for the specific 352 
temporal and spatial window of the inversion.  Opportunities for direct validation may be sparse 353 
but indirect validation with the CTM to be used for the inversion is particularly effective.  Such 354 
indirect validation can exploit all relevant suborbital data collected in the window to assess their 355 
consistency with the satellite data. This has been standard practice in inversions of 356 
SCIAMACHY and GOSAT data, and has resulted in correction factors applied to the data as a 357 
function of latitude (Bergamaschi et al., 2009, 2013; Fraser et al., 2013; Alexe et al., 2015; 358 
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Turner et al., 2015), water vapor (Houweling et al., 2014; Wecht et al., 2014a), or air mass factor 359 
(Cressot et al., 2014).  360 

 361 
3. Inferring methane emissions from satellite data 362 
 363 
3.1 Overview of inverse methods 364 

 365 
We present here a brief overview of inverse methods as needed for understanding their 366 

use to estimate methane emissions from satellite data. The general approach for inferring 367 
methane emissions from observed atmospheric concentrations is to use a 3-D CTM describing 368 
the sensitivity of concentrations to emissions. The CTM simulates atmospheric transport on the 369 
basis of assimilated meteorological data for the observation period and a 2-D field of gridded 370 
emissions. It computes concentrations as a function of emissions by solving the mass continuity 371 
equation that describes the change in the 3-D concentration field resulting from emissions, 372 
winds, turbulence, and chemical loss. In Eulerian CTMs, the solution to the continuity equation 373 
is done on a fixed atmospheric grid. In Lagrangian CTMs, often called Lagrangian Particle 374 
Dispersion Models (LPDMs), the solution is obtained by tracking a collection of air particles 375 
moving with the flow. Eulerian models have the advantage of providing a complete, continuous, 376 
and mass-conserving representation of the atmosphere. LPDMs have the advantage of being 377 
directly integrable backward in time, so that the source footprint contributing to the 378 
concentrations at a particular receptor point is economically computed. Eulerian models can also 379 
be integrated backward in time to derive source footprints using the model adjoint (Henze et al., 380 
2007). LPDMs have been used extensively for inverse analyses of ground and aircraft methane 381 
observations, where the limited number of receptor points makes the Lagrangian approach very 382 
efficient (Miller et al., 2013; Ganesan et al., 2015; Henne et al., 2016). Satellite observations 383 
involve a considerably larger number of receptor points, including different altitudes contributing 384 
to the column measurement. For this reason, all published inversions of satellite methane data so 385 
far have used Eulerian CTMs. A preliminary study by Benmergui et al. (2015) applies an LPDM 386 
to inversion of GOSAT data.  387 

The CTM provides the sensitivity of concentrations to emissions at previous times. By 388 
combining this information with observed concentrations we can solve for the emissions needed 389 
to explain the observations. Because of errors in measurements and in model transport, the best 390 
that can be achieved is an error-weighted statistical fit of emissions to the observations.  This 391 
must account for prior knowledge of the distribution of emissions, generally from a bottom-up 392 
inventory, in order to target the fit to the most relevant emission variables and in order to achieve 393 
an optimal estimate of emissions consistent with all information at hand. 394 

The standard method for achieving such a fit is Bayesian optimization. The emissions are 395 
assembled into a state vector x (dim n), and the observations are assembled into an observation 396 
vector y (dim m). Bayes’ theorem gives 397 

 ( ) ( | )( | )
( )

P PP
P

=
x y xx y

y
  (3) 398 

 399 
where P(x) and P(y) are the probability density functions (PDFs) of x and y, P(x|y) is the 400 
conditional PDF of x given y, and P(y|x) is the conditional PDF of y given x. We recognize here 401 
P(x) as the prior PDF of x before the observations y have been made, P(y|x) as the observation 402 
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PDF given the true value of x (for which the observations were made), and P(x|y) as the 403 
posterior PDF of x after the observations y have been made. The optimal estimate of emissions is 404 
defined by the maximum of P(x|y), which we obtain by solving ( | )P∇ =x x y 0  . 405 

In the absence of better information, error PDFs are generally assumed to be Gaussian 406 
(Rodgers, 2000). We then have  407 

 1/2/2

1 1( ) exp[ )]
2(2 )

T
n

P
π

= − -1
A A A

A

x (x - x ) S (x - x
S

  (4) 408 

 1/2/2

1 1( | ) exp[ ]
2(2 )

T
m

P
π

= − -1
O

O

y x (y - F(x)) S (y - F(x))
S

  (5) 409 

 410 
where xA is the prior estimate, SA is the associated prior error covariance matrix, F is the CTM 411 
solving for y = F(x) and is called the forward model for the inversion, and SO is the observational 412 
error covariance matrix including contributions from measurement and CTM errors. An 413 
important assumption here is that the observational error is random; any known systematic bias 414 
in the measurement or the CTM must be removed before the inversion is conducted. This 415 
requires careful validation (Sect. 2.2). 416 

The optimization problem ( | )P∇ =x x y 0  is solved by minimizing the cost function J(x): 417 

 -1( ) ( ) ( ( ) ( )T TJ = − − + − −-1
A A A Ox x x S x x ) y F(x) S y F(x)   (6) 418 

 419 
where the PDFs have been converted to their logarithms and the terms independent of x have 420 
been discarded. In particular, P(y) in Eq. (3) is discarded since it does not depend on x. The 421 
minimum of J is found by differentiating Eq. (6): 422 

 1( ) 2 ( ) 2 ( ( ) )TJ −∇ = − + =-1
x A A Ox S x x K S F x - y 0   (7) 423 

 424 
where /= ∇ = ∂ ∂xK F y x  is the Jacobian of F and KT is its adjoint.  425 
  426 
Analytical method.  Equation (7) can be solved analytically if the relationship between 427 
emissions and atmospheric concentrations is linear, such that F(x) = Kx + c where c is a 428 
constant.  This is the case for methane if the tropospheric OH concentration field used in the 429 
CTM to compute methane loss is not affected by changes in methane. Although methane and OH 430 
levels are interdependent because methane is a major OH sink (Prather, 1996), the global 431 
methane loading relevant for computing OH concentrations is well known (Prather et al., 2012). 432 
It is therefore appropriate to treat OH concentrations as decoupled from methane in the 433 
inversion. Analytical solution of Eq. (7) for a linear model y = F(x) (where the constant c can be 434 
simply subtracted from the observations) yields an optimal estimate  x̂  with Gaussian error 435 
characterized by an error covariance matrix Ŝ  (Rodgers, 2000):          436 

 ˆ ( )= + −A Ax x G y Kx   (8) 437 
             438 
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 1ˆ ( )T −= -1 -1
O AS K S K + S   (9) 439 

 440 
Here G is the gain matrix given by 441 

 1(T T −= +A A OG S K KS K S )   (10) 442 
 443 
The degree to which the observations constrain the state vector of emissions is diagnosed by the 444 
averaging kernel matrix ˆˆ /= ∂ ∂ = = − -1

n AA x x GK I SS  expressing the sensitivity of the optimized 445 
estimate to the actual emissions x. Here In is the n × n identity matrix. The observations may 446 
adequately constrain some features of the emission field and not others. The number of 447 
independent pieces of information on the emission field provided by the observing system is 448 
given by the trace of A and is called the degrees of freedom for signal (DOFS = tr(A)). 449 

Analytical solution to the inverse problem provides full error characterization of the 450 
solution through Ŝ and A. This is a very attractive feature, particularly for an underconstrained 451 
problem where we need to understand what information the observations actually provide. 452 
However, it requires explicit construction of the Jacobian matrix. With an Eulerian CTM this 453 
requires n individual simulations, each providing a column j of the Jacobian / jx∂ ∂y . With an 454 
LPDM (or the adjoint of an Eulerian CTM), this requires m individual simulations tracking the 455 
backward transport from a given observation location and providing a row i of the Jacobian 456 

/iy∂ ∂x . Either way is a computational challenge when using a very large number m of satellite 457 
observations to optimize a very large number n of emission elements with high resolution. 458 

Equations (8)-(10) further require the multiplication and inversion of large matrices of 459 
dimensions m and n. This curse of dimensionality can be alleviated by ingesting the observations 460 
sequentially as uncorrelated data packets (thus effectively reducing m) (Rodgers, 2000) and by 461 
recognizing that individual state vector elements have only a limited zone of influence on the 462 
observations (thus effectively reducing n or taking advantage of sparse-matrix methods) (Bui-463 
Thanh et al., 2012). When observations are ingested sequentially for successive time periods 464 
with each packet used to update emissions for the corresponding period we refer to the method as 465 
a Kalman filter. 466 

There is danger in over-interpreting the posterior error covariance matrix Ŝ  when the 467 
number of observations is very large, as from a satellite data set, because of the implicit 468 
assumption that observational errors are truly random and are representatively sampled over the 469 
PDF. CTM errors are rarely unbiased and generally not representatively sampled. Thus Ŝ  tends 470 
to be an over-optimistic characterization of the error on the optimal estimate. An alternate 471 
approach for error characterization is to compute an ensemble of solutions with modified prior 472 
estimates, forward model, inverse methods, or error estimates (Heald et al., 2004; Henne et al., 473 
2016). 474 
 475 
Adjoint method.  The limitation on the size of the emission state vector can be lifted by solving 476 
equation (7) numerically instead of analytically. This is done by applying iteratively the adjoint 477 
of the CTM, which is the model operator KT, to the error-weighted model-observation 478 
differences 1( ( )−

OS F x) - y . We discussed above how this backward transport provides the 479 
sensitivity of concentrations to emissions at prior times, i.e., the footprint of the concentrations. 480 
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Here we apply it to determine the footprint of the errors in emissions as diagnosed by the model-481 
observation differences. For an Eulerian CTM the adjoint must be independently constructed 482 
(Henze et al., 2007), while for a LPDM it is simply obtained by transporting the air particles 483 
backward in time. 484 

The iterative procedure in the adjoint method is as follows. Starting from the prior 485 
estimate xA as initial guess, we apply the adjoint operator KT to the error-weighted model-486 
observation differences 1( ( )−

O AS F x ) - y  and in this manner determine the sensitivity of these 487 

differences to emissions earlier in time; this defines the cost function gradient (J∇x Ax )  in 488 

equation (7). By applying (J∇x Ax )  to xA with a steepest-descent algorithm we obtain a next 489 

guess x1 for the minimum of J(x), compute the corresponding vector KT 1( ( )−
O 1S F x ) - y , and add 490 

the error-weighted difference from the prior estimate SA-1(x1 – xA) to obtain the cost function 491 
gradient (J∇x 1x ) .  By applying (J∇x 1x ) to x1 with the steepest-descent algorithm we obtain a 492 
next guess x2, and iterate in this manner to find the minimum of J(x) (Henze et al. 2007). A 493 
major advantage of the adjoint method is that the Jacobian is never explicitly computed, and 494 
there are no multiplication/inversion operations involving large matrices. Thus there is no 495 
computational limitation on the dimension of x. Another major advantage is that the error PDFs 496 
do not need to be Gaussian. A drawback is that error characterization is not included as part of 497 
the solution. Approximate methods are available at additional computational cost to estimate the 498 
posterior error covariance matrix Ŝ  and from there the averaging kernel matrix A (Bousserez et 499 
al., 2015). 500 
 501 
MCMC methods. Markov Chain Monte Carlo (MCMC) methods are yet another approach to 502 
solve the Bayesian inverse problem. Here the posterior PDF P(x|y) is constructed by direct 503 
computation from equation (3) using stochastic sampling of the  x domain and with given forms 504 
for P(x) and P(y|x). These forms may be Gaussian, as in Eqs. (4) and (5), but not necessarily so. 505 
Starting from the prior estimate xA, we compute P(xA) and P(y|xA), and from there compute 506 
P(xA|y) using Eq. (3).  We then define a next element of the Markov chain as x1 = xA + ∆x where  507 
∆x  is a random increment, compute P(x1|y), and so on. With a suitable algorithm to sample 508 
representatively the x domain as successive elements of the Markov chain, the full structure of 509 
P(x|y) is eventually constructed.  Miller et al. (2014) and Ganesan et al. (2015) used MCMC 510 
methods in regional inversions of suborbital methane data. A major advantage is that the prior 511 
and observation PDFs can be of any form. For example, the prior PDF can include a “fat tail” to 512 
allow for the possibility of a point source behaving as a “super-emitter” either continuously or 513 
sporadically (Zavala-Araiza et al., 2015). Another advantage is that the full posterior PDF of the 514 
solution is obtained (not just the optimal estimate). The main drawback is the computational cost 515 
of exploring the n-dimensional space defined by x. 516 

There are other ways of expressing the prior information than as (xA, SA). In the 517 
hierarchical Bayesian approach (Ganesan et al., 2014), information on the prior is optimized as 518 
part of the inversion. In the geostatistical approach (Michalak et al., 2006), prior information is 519 
expressed in terms of emission patterns rather than magnitudes. The cost function in the 520 
geostatistical inversion is  521 

 -1( , ) ( ) ( ) ( ) ( )T TJ = − − + − −-1
Ox β x Pβ S x Pβ y F(x) S y F(x)   (11) 522 
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 523 
where the n×q matrix P describes the q different state vector patterns, with each column of P 524 
describing a normalized pattern such as the distribution of livestock. The unknown vector β of 525 
dimension q gives the mean scaling factor for each pattern. Thus Pβ represents a prior model for 526 
the mean, with β to be optimized as part of the inversion. The covariance matrix S gives the prior 527 
covariance of x, rather than the error covariance. 528 

Inverse methods for constraining emissions can be applied not only to current observing 529 
systems but also to evaluate formally the capability of a proposed future instrument to improve 530 
current knowledge. Given an observation plan and error specifications for the proposed 531 
instrument, we can compute the expected observational error covariance matrix SO. Given the 532 
prior information (xA, SA) informed by the current observing system (from an inversion without 533 
the proposed instrument), we can quantify the information added by the proposed instrument by 534 
computing Ŝ  from Eq.  (9) or an adjoint-based approximation (Bousserez et al., 2015). From 535 
there we obtain the averaging kernel matrix A = In - 1ˆ −

ASS  and the DOFS, and compare to the 536 
DOFS without the instrument to quantify the information to be gained. This assessment will tend 537 
to be optimistic because of the assumption that errors are random, well characterized, and 538 
representatively sampled, as discussed above. But at least it demonstrates the potential of the 539 
proposed instrument. Applications are presented in Sect. 3.4. 540 

The simple error analysis described above to assess the value of a future instrument is 541 
sometimes loosely called an observing system simulation experiment (OSSE). However, the 542 
OSSE terminology is generally reserved for a more rigorous test (and an actual ‘experiment’) of 543 
the benefit of adding the proposed instrument to the current observing system, including realistic 544 
accounting of CTM errors. A standard OSSE setup is illustrated in Fig. 6. The OSSE uses two 545 
CTMs driven by different assimilated meteorological datasets for the same period. The first 546 
model (CTM1) produces a synthetic 3-D field of atmospheric concentrations from an emission 547 
inventory taken as the “true” emissions (A in Fig. 6). For purpose of the exercise, CTM1 is taken 548 
to have no error and so describes the “true” 3-D field of atmospheric concentrations. This “true” 549 
atmosphere is then sampled synthetically with the current observing system, adding instrument 550 
noise as stochastic random error, so that the resulting synthetic data mimic the current observing 551 
system. Inversion of these data returns emissions optimized by the current observing system (B 552 
in Fig. 6) We then add the proposed instrument to the observing system, again adding instrument 553 
noise as random error on the basis of the instrument specifications, and invert the data using the 554 
previously optimized emissions (B) as prior estimate. The resulting optimized emissions (C in 555 
Fig. 6) can be compared to the “true” emissions (A) and to the prior emissions (B) to quantify the 556 
value of the proposed instrument and its advantage relative to the current observing system. The 557 
use of two independent assimilated meteorological data sets is important for this exercise as it 558 
allows a realistic accounting of the CTM error component. Such an OSSE setup is frequently 559 
used to evaluate proposed meteorological instruments, and it has previously been applied to the 560 
evaluation of a geostationary instrument for tropospheric ozone (Zoogman et al., 2014) but not 561 
so far for methane. 562 
 563 
3.2 Specific issues in applying inverse methods to satellite methane data 564 
  565 

There are a number of issues requiring care in the application of inverse methods to 566 
estimate methane emissions from observations of atmospheric methane, some of which are 567 
specific to satellite observations.  568 
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 569 
Selection of emission state vector.  A first issue relates to the resolution of the emission field 570 
(state vector) to be optimized by the inversion. Methane originates from a large number of 571 
scattered sources, with emission factors that are poorly known and highly variable for a given 572 
source sector. It is therefore of interest to optimize emissions with fine spatial resolution, and for 573 
some sources also with fine temporal resolution. The resolution of the emission state vector can 574 
in principle be as fine as the grid resolution and time step of the CTM used as forward model. 575 
However, the amount of information contained in the observations places limits on the extent to 576 
which emissions can actually be resolved. Satellite data sets may be large but the data are noisy. 577 
If the dimension of the emission state vector is too large relative to the information content of the 578 
observations, then the Bayesian optimization problem is underconstrained and the solution may 579 
be heavily weighted by the prior estimate.  This is known as the smoothing error and the 580 
associated error covariance matrix is (In – A)SA(In – A)T (Rodgers, 2000). Smoothing is not a 581 
problem per se if the off-diagonal structure of SA is well-characterized, so that information can 582 
propagate between state vector elements; but it generally is not. When SA is specified diagonal, 583 
as is often the case, the ability to depart from the prior estimate and reduce the posterior error 584 
will be artificially suppressed if the dimension of x is too large (Wecht et al., 2014a).  585 

Figure 7 illustrates the smoothing problem in an inversion of methane emissions over 586 
North America using SCIAMACHY. The remedy is to reduce the dimension of the emission 587 
state vector, by aggregating state vector elements and optimizing only the aggregate (Fig. 7). 588 
This introduces however another type of error, known as aggregation error, because the 589 
relationship between aggregated state vector elements is now imposed by the prior estimate 590 
(Kaminski et al., 2001). As shown by Turner and Jacob (2015) and illustrated in Fig. 7, it is 591 
possible to define an optimal dimension of the emission state vector by balancing the smoothing 592 
and aggregation errors. For a multi-annual GOSAT data set this implies a spatial resolution of 593 
the order of 100-1000 km in methane source regions. The state vector of emissions can be 594 
reduced optimally by hierarchical clustering (Wecht et al., 2014a) or by using radial basis 595 
functions with Gaussian PDFs (Turner and Jacob, 2015). 596 

 597 
Bottom-up inventory used as prior estimate. Inverse analyses require high-quality gridded 598 
bottom-up inventories to regularize the solution and guide the interpretation of results. All 599 
inversions of methane satellite data so far have relied on the EDGAR bottom-up inventory for 600 
anthropogenic emissions with 0.1o×0.1o  spatial resolution (European Commission, 2011), which 601 
is presently the only global bottom-up inventory available on a fine grid. EDGAR relies on IPCC 602 
(2006) default tier 1 methods that are relatively crude and it provides only limited classification 603 
of methane emissions by source sector.  Alexe et al. (2015) and Turner et al. (2015) find that 604 
uncertainties in source patterns in the EDGAR inventory preclude the attribution of inventory 605 
corrections from their GOSAT inversions to specific source sectors. Many individual countries 606 
produce national inventories using more accurate IPCC tier 2/3 methods with individual 607 
reporting of large sources and detailed breakdown by source sectors, but these inventories are 608 
generally available only as national totals and are thus not usable for inversions. 609 

The need for improved, finely gridded bottom-up inventories for inverse analyses is well 610 
recognized. Wang and Bentley (2002) disaggregated the Australian national inventory to guide 611 
inversion of surface observations at Cape Grim, Tasmania. Zhao et al. (2009) disaggregated the 612 
California Air Resources Board (CARB) statewide inventory to a 0.1o×0.1o grid. Hiller et al. 613 
(2014) disaggregated the Swiss national inventory to a 500×500 m2 grid. Maasakkers et al. 614 
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(2016) developed a gridded 0.1o×0.1o version of the national US emission inventory produced by 615 
EPA (Fig. 1) and shows major differences with EDGAR in terms of source patterns even though 616 
the national totals are similar.  617 

 618 
Positivity of the solution.  The standard assumption of Gaussian error PDFs for the prior 619 
estimate allows for the possibility of negative methane emissions that are generally unphysical. 620 
Small negative values may be acceptable as noise, and can be removed by averaging with 621 
neighboring positive values. The analytical solution to the Bayesian inverse problem requires 622 
Gaussian error PDFs (Sect. 3.1), but numerical solutions do not. Adjoint-based inversions may 623 
use lognormal (Wecht et al., 2014a) or semi-exponential (Bergamaschi et al., 2013) error 624 
distributions to prevent negative solutions.  Miller et al. (2014) present additional approaches for 625 
imposing positivity of the solution, including (1) application of Karush-Kuhn-Tucker (KKT) 626 
conditions, and (2) MCMC methods with sampling domain restriction. These approaches will 627 
tend to bias the solution by enforcing zero values for a subset of the state vector (KKT 628 
conditions) or by artificially inflating the PDF of the prior estimate in the vicinity of zero 629 
(MCMC methods).  630 

 631 
Variability in the methane background. Observations from the HIPPO pole-to-pole aircraft 632 
campaigns over the Pacific in 2010-2011 indicate background concentrations of tropospheric 633 
methane varying with latitude from 1750-1800 ppb in the southern hemisphere to 1850-1900 ppb 634 
at high northern latitudes (Wofsy, 2011). The mid-latitudes background varies on synoptic scales 635 
under the alternating influence of high-latitude and low-latitude air masses. This variability in 636 
background is comparable to the magnitude of concentration enhancements in methane source 637 
regions, so that accurate accounting of the global methane background and its variability is 638 
essential for regional inversions. Local source inversions may be able to use instead regional 639 
background information upwind of the source (Krings et al., 2013). 640 

Observations at remote sites from the NOAA Earth System Research Laboratory (ESRL) 641 
network (Dlugokencky et al., 2011; Andrews et al., 2014) accurately characterize the seasonal 642 
latitude-dependent background, and one can then rely on the CTM used as forward model in the 643 
inversion to resolve the synoptic variations in that background. Global inversions of satellite data 644 
have exploited the NOAA ESRL network data in different ways. Bergamaschi et al. (2009, 645 
2013), Fraser et al. (2013), and Alexe et al. (2015) included the data in their inversions together 646 
with the satellite data. Cressot et al (2014) conducted separate inversions with NOAA/ESRL and 647 
satellite data, and demonstrated consistency between the two. In limited-domain inversions such 648 
as on the continental scale of North America, the background must be specified as a time- and 649 
latitude-dependent boundary condition. This has been done by Miller et al. (2013) using the 650 
NOAA/ESRL data as boundary conditions, in Wecht et al. (2014a) by optimizing the boundary 651 
conditions as part of the inversion, and by Turner et al. (2015) by using results from a global 652 
inversion as boundary conditions for the continental-scale inversion. 653 
 654 
Methane sink in the troposphere. The main sink for methane is oxidation by the OH radical in 655 
the troposphere, with a lifetime of 9 years constrained by global observations of 656 
methylchloroform (MCF) (Prather et al., 2012). OH is produced photochemically and its 657 
concentration is controlled by complex chemistry that is not well represented in models 658 
(Voulgarakis et al., 2013). However, the loss of methane is sufficiently slow that variability in 659 
OH concentrations affects methane concentrations only on seasonal, interannual, and 660 

15 
 

Atmos. Chem. Phys. Discuss., doi:10.5194/acp-2016-555, 2016
Manuscript under review for journal Atmos. Chem. Phys.
Published: 28 June 2016
c© Author(s) 2016. CC-BY 3.0 License.



interhemispheric scales (Bousquet et al., 2006). It does not affect the regional-scale gradients 661 
relevant to inverse analyses of satellite data. Global inverse analyses generally compute the 662 
methane sink by using specified global 3-D monthly fields of OH concentrations from an 663 
independent simulation of tropospheric oxidant chemistry and compatible with the MCF 664 
constraint (Bergamaschi et al, 2013; Houweling et al., 2014). Cressot et al. (2014) optimized 665 
methane and MCF emissions together in their inversion, thus allowing for adjustment of OH 666 
concentrations within the uncertainty range allowed by MCF. Specifying OH concentrations is 667 
not an issue for limited-domain inversions with spatial boundary conditions, because the 668 
modeling domain is then ventilated on a time scale considerably shorter than the 9-year methane 669 
lifetime. In that case, information on the methane sink is effectively incorporated in the boundary 670 
conditions. 671 
 672 
Stratospheric methane. Inversions of satellite methane data require a proper accounting of the 673 
stratosphere. The stratosphere accounts for about 5% of the total methane column in the tropics 674 
and 25% at high latitudes (Ostler et al., 2015). Methane enters the stratosphere in the tropics and 675 
is transported to high latitudes on a time scale of about 5 years. Over that time it is 676 
photochemically oxidized by OH, O(1D), and Cl atoms, leading to a seasonal variation in the 677 
column mean mole fraction XCH4  out of phase with tropospheric methane (Saad et al., 2014). 678 
Meridional transport in the stratosphere tends to be too fast in models, so that stratospheric 679 
methane concentrations at high latitudes are overestimated (Patra et al., 2011). Not correcting for 680 
this effect in inversions can lead to a 5% overestimate of the methane source at northern mid-681 
latitudes and a 40% overestimate in the Arctic (Ostler et al., 2015).   682 

A number of observational data sets are available to evaluate the stratospheric methane 683 
simulation in CTMs. These include balloons (Bergamaschi et al., 2013), TCCON stratospheric 684 
retrievals (Saad et al., 2014), and satellite observations by solar occultation and in the limb 685 
(deMaziere et al., 2008; von Clarmann et al., 2009; Noel et al., 2011; Minschwaner and Manney, 686 
2014). Bergamaschi et al. (2013) presented a detailed evaluation of their CTM with balloon 687 
observations as prelude to inversion of SCIAMACHY data, and this led them to limit their 688 
inversion to the 50oS-50oN latitudinal range where model bias was small.  Another approach is to 689 
apply a latitudinal bias correction for the difference between the CTM and the satellite data 690 
(Turner et al., 2015).  Ostler et al. (2015) presented a method to correct for stratospheric methane 691 
bias in CTMs by using constraints on the age of air in the stratosphere from vertical profiles of 692 
sulfur hexafluoride (SF6). 693 
 694 
Error characterization.  Estimation of prior and observational error covariances is crucial for 695 
inverse modeling. Observational error is the sum of instrument and CTM errors.  We discussed 696 
in Sect. 2.2 the characterization of instrument error by validation with suborbital data. CTM error 697 
variance can be estimated by intercomparison of different CTMs (Patra et al., 2011) and added to 698 
the instrument error variance in quadrature. A better and more straightforward approach is to 699 
estimate the total observational error variance by the residual error method (Heald et al., 2004), 700 
which uses statistics of differences between the observations and the CTM concentrations 701 
computed with prior emissionss. Systematic difference (bias) is assumed to be caused by error in 702 
emissions (to be corrected in the inversion), The remaining residual difference (averaging to 703 
zero) defines the total observational error, including contributions from instrument and CTM 704 
errors. This method has the merit of being consistent with the inversion premise that the 705 
observational error is random. The CTM error variance can then be deduced by subtraction of the 706 
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instrument error variance. Application to SCIAMACHY and GOSAT shows that the instrument 707 
error tends to be dominant (Wecht et al., 2014a; Turner et al., 2015). Error correlation populating 708 
the off-diagonal terms of the observational error covariance matrix is typically specified as an e-709 
folding characteristic length scale (Heald et al., 2004).  710 
 Error in the prior bottom-up emission inventory is often crudely assumed to be a fixed 711 
percentage (such as 50%), with no error correlation, for lack of better information. Although 712 
some bottom-up emission inventories include error budgets produced by the bottom-up 713 
methodology (EPA, 2016), these are generally not available in gridded inventories such as 714 
EDGAR. An alternate approach is to intercompare independently generated bottom-up 715 
inventories. This has been done for wetlands with the WETCHIMP intercomparison (Melton et 716 
al., 2013) and for the 1ox1o gridded version of the US EPA anthropogenic methane inventory by 717 
comparison to local inventories (Maasakkers et al., 2016). Error PDFs are usually assumed to be 718 
normal or log-normal, but more skewed PDFs may better capture the occurrence of “super-719 
emitters”  (Zavala-Areiza et al., 2015). The prior error covariance matrix is usually taken to be 720 
diagonal, but some error correlation would in fact be expected for a given source sector. This is 721 
accounted for in the geostatistical inversion approach (Eq. (11)) by assuming coherence in source 722 
patterns. Scale dependence of the error must also be recognized, as errors in emissions for 723 
individual grid squares increase with the grid resolution of the inventory (Maasakkers et al., 724 
2016). 725 

Sources completely missing from the prior bottom-up inventory pose a particular 726 
difficulty for inverse modeling, because inverse methods applied to an underconstrained problem 727 
will tend to correct emissions where the prior estimate indicates them to be. Simply increasing 728 
the error on the prior estimate is not a satisfactory approach because the inverse solution may 729 
then misplace emissions. Before conducting the inversion it is important to compare the CTM 730 
simulation using prior emissions to the observations, and diagnose whether any elevated values 731 
in the observations that are absent in the simulation could represent missing sources.  732 
 733 
3.3 Applications to SCIAMACHY and GOSAT data 734 
 735 

Most inversions of SCIAMACHY and GOSAT satellite data for atmospheric methane 736 
have been done on the global scale, estimating emissions at the resolution of the CTM used as 737 
forward model (typically a few hundred km) by applying an adjoint method (Bergamaschi et al., 738 
2009, 2013; Spahni et al., 2011; Monteil et al., 2013; Cressot et al., 2014; Houweling et al. 2014; 739 
Alexe et al., 2015). Fraser et al. (2013) estimated monthly methane fluxes over continental-scale 740 
source regions by using an analytical method with a Kalman filter. Wecht et al. (2014a) and 741 
Turner et al. (2015) used continental-scale inversions for North America to estimate emissions at 742 
up to 50 km resolution in source regions through optimal selection of the state vector, with 743 
Turner et al. (2015) applying an analytical inversion to characterize errors.  Fraser et al. (2014) 744 
and Pandey et al. (2015) optimized both methane and CO2 fluxes using XCH4/XCO2 ratios observed 745 
from GOSAT, thus avoiding the need for independent specification of CO2 concentrations in the 746 
CO2 proxy method for methane retrieval. Cressot et al. (2014) and Alexe et al. (2015) compared 747 
results from inversions using different SCIAMACHY and GOSAT retrievals, and found overall 748 
consistency in different regions of the world; however, Cressot et al. (2014) pointed out large 749 
errors when using the degraded post-2005 SCIAMACHY data (see Sect. 2.2). 750 

Inversions of methane fluxes using GOSAT data show consistency with observations 751 
from NOAA ESRL surface sites, both in joint inversions (Bergamaschi et al., 2009, 2013; Fraser 752 
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et al., 2013; Alexe et al., 2015) and in independent evaluations (Turner et al., 2015). GOSAT 753 
observations are sparse, with observation points separated by about 260 km, but still provide 754 
considerably more information on methane emissions at the continental scale than the surface 755 
network observations (Fraser et al., 2013; Alexe et al., 2015). This is particularly true in the 756 
tropics, where methane emissions are large but surface observations are few (Bergamaschi et al., 757 
2013; Cressot et al., 2014; Houweling et al., 2014).  758 

Inversions of SCIAMACHY and GOSAT data have revealed important biases in bottom-759 
up inventories of methane emissions.  Monteil et al. (2013) and Spahni et al. (2011) find large 760 
errors in wetland emission models.  Bergamaschi et al. (2013) find that 2003-2010 growth in 761 
Chinese emissions is less than estimated by EDGAR. Inversion results in the US consistently 762 
show that EDGAR emissions in the South-Central US are low while emissions along the East 763 
Coast are high (Wecht et al., 2014a; Alexe et al., 2015; Turner et al., 2015).  764 

Ultimately, the application of satellite data to improve understanding of methane 765 
emissions requires that the optimized estimates from the inversions be related to specific source 766 
sectors and processes in the bottom-up inventories. SCIAMACHY observations over wetlands 767 
have been used in this manner to improve bottom-up models of wetland emissions (Spahni et al., 768 
2011; Bloom et al., 2010, 2012). Application of satellite observations to improve anthropogenic 769 
emission inventories has so far been stymied by poor representation of emission patterns in the 770 
inventories. For example, the EDGAR underestimate in the South-Central US cannot be 771 
confidently attributed to livestock or oil/gas sectors because EDGAR emission patterns for these 772 
sectors are grossly incorrect (Maasakkers et al., 2016).  773 

Satellite data sets for correlative variables could help relate methane observations to 774 
source sectors but this has received little attention so far. Bloom et al. (2012) combined methane 775 
data from SCIAMACHY with water height data from the GRACE satellite instrument to 776 
improve their bottom-up inventory of wetland methane emissions. Worden et al. (2012) 777 
combined measurements of methane and CO from TES to quantify methane emissions from 778 
Indonesian fires. TIR measurements of ammonia are available from the TES, IASI, and CrIS 779 
satellite instruments (Shephard et al., 2011; Van Damme et al., 2014; Shephard and Cady-780 
Pereira, 2015) and provide a fingerprint of livestock emissions (Zhu et al., 2013), but have yet to 781 
be exploited in combination with methane satellite data.  Ethane would provide a marker for 782 
oil/gas emissions but is observed from space only by solar occultation with sensitivity limited to 783 
the upper troposphere (Abad et al., 2011). TROPOMI will provide data for both methane and CO 784 
from common SWIR retrievals. Beyond constraining the combustion source of methane, the CO 785 
observations could be valuable to decrease model transport errors in joint methane-CO 786 
inversions (Wang et al., 2009).  787 
 788 
3.4 Potential of future satellite observations 789 

 790 
Future satellite instruments listed in Table 1 will have higher pixel resolution, spatial 791 

density, and temporal frequency than SCIAMACHY or GOSAT. Several studies have examined 792 
how these attributes will improve the capability of methane flux inversions. Wecht et al. (2014b) 793 
conducted an inversion of methane emissions in California at 1/2o × 2/3o resolution using 794 
boundary layer observations from the May-June 2010 CalNex aircraft campaign and concurrent 795 
observations from GOSAT. They then estimated the information that TROPOMI or the GEO-796 
CAPE geostationary mission would have provided over the 2-month period through analysis of 797 
the corresponding observational error correlation matrices. Inversion of the CalNex aircraft data 798 
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provided 12 independent pieces of information (DOFS) on the spatial distribution of emissions in 799 
California as compared to 1.3 for GOSAT, 11 for TROPOMI, and 26 for GEO-CAPE. 800 
TROPOMI could thus constrain emissions with a skill comparable to a dedicated statewide 801 
aircraft campaign, and a geostationary mission with hourly observations would provide much 802 
more. The study likely underestimated the capability of TROPOMI and GEO-CAPE to resolve 803 
hotspots because of the coarse 1/2o × 2/3o resolution of the forward model. We return to this 804 
point in Sect. 4. 805 

Bousserez et al. (2016) explored the potential of geostationary observations to constrain 806 
methane emissions on the continental scale of North America over weekly and monthly time 807 
scales. Again they used a CTM with 1/2o × 2/3o spatial resolution as forward model and averaged 808 
the 4 × 4 km2 geostationary observation pixels over that coarser grid with corresponding error 809 
reduction. They considered three different configurations of geostationary instruments observing 810 
hourly in the SWIR, TIR, and SWIR+TIR (multispectral retrieval).They found that SWIR 811 
geostationary observations would effectively constrain methane emissions over the 1/2o × 2/3o 812 
grid on a monthly time scale, while a combined SWIR+TIR instrument could deliver that 813 
information on a weekly time scale.  814 

Bovensmann et al. (2010) examined the potential of CarbonSat to detect methane point 815 
sources by inversion of the Gaussian dispersion plume, and Rayner et al. (2014) did the same for 816 
geoCARB.  We review their results in the next Section.  817 

4. Observing requirements for regional and point sources 818 

Here we present a simple analysis of the potential of future satellite instruments for 819 
observing regional and point sources from space.  Observing requirements are somewhat 820 
different for climate policy and for point source monitoring purposes. From a climate policy 821 
standpoint, the goal is to quantify annual mean emissions with emphasis on the regional scale 822 
and source attribution. This plays to the strength of satellites, as repeated observations of the 823 
same scene measure the temporal average with improved precision, and also smooth out the 824 
temporal variability that can bias estimates from short-term field campaign data. From a point 825 
source monitoring standpoint, on the other hand, we may be most interested in detecting large 826 
leaks or venting from facilities emitting far more than would be expected on the basis of normal 827 
operations (the so-called “super-emitters”). Here the advantage of satellite data is spatial 828 
coverage, but a requirement is to have a localized and detectable signal on short time scales, with 829 
detection and localization being more important than precise quantification.  830 

For conceptual purposes we define detection/quantification as the ability to observe the 831 
methane enhancement ∆X [ppb] from a source relative to the surrounding background. Single-832 
scene instrument precisions σ [ppb] are taken from Table 1, and we make the optimistic 833 
assumption that precision improves as the square root of the number of observations following 834 
the central limit theorem (Kulawik et al., 2016). We define detectability as a precision of ∆X/2 835 
and quantification as a precision of ∆X/5.  Only a fraction F of pixels is successfully retrieved 836 
because of clouds, unsuccessful spectral fits, or other factors. The time required for 837 
detection/quantification of the source is then 838 

 839 

 
21max 1, max[1, ]R

qt t
FN X

 σ =   ∆   
  (12) 840 
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 841 
where N is the number of observations of the source for a single satellite pass, tR is the time 842 
interval between passes, and q takes on values of 2 for detection and 5 for quantification. 843 

We first examine the capability of satellite instruments to quantify emissions from a large 844 
source region by taking as example the Barnett Shale in Northeast Texas, a 300 × 300 km2 region 845 
with about 30,000 active wells as well as livestock operations and the Dallas/Fort Worth 846 
metropolitan area. An intensive field campaign was conducted in the region in September-847 
October 2013 to characterize individual sources (Harriss et al., 2015). Synthesis of the data by 848 
Lyon et al. (2015) gives a total emission for the region of 72 tons h-1. Take the Barnett Shale 849 
region as a square of side W = 300 km ventilated by a uniform wind of speed U. The mean 850 
enhancement ∆X relative to the upwind background is obtained by mass balance: 851 

 852 

 
4

a

CH

M QgX
M UWp

∆ =   (13) 853 

 854 
where Ma = 0.029 kg mol-1 and MCH4 = 0.016 kg mol-1 are the molecular weights of dry air and 855 
methane, p is the dry atmospheric surface pressure, and g = 9.8 m s-2 is the acceleration of 856 
gravity. Taking U = 5 km h-1 and p = 1000 hPa, and with Q = 72 tons CH4 h-1, we obtain ∆X = 857 
8.5 ppb or 0.47%. 858 

Table 2 summarizes the capabilities of the solar backscatter instruments in Table 1 to 859 
quantify such a source. GOSAT views 2-3 pixels for a 300×300 km2 region on a given orbit in its 860 
routine survey mode and has a return time of 3 days. The single-retrieval precision of GOSAT is 861 
0.7% or 13 ppb. 17% of GOSAT land pixels are retrieved successfully on average in the Parker 862 
et al. (2011) CO2 proxy retrieval (F = 0.17). Replacement into Eq. (12) implies that it takes about 863 
1 year for GOSAT to effectively quantify emissions from the Barnett Shale. This explains why 864 
inverse analyses of GOSAT data retain substantial information from the prior as diagnosed by 865 
the averaging kernel matrix (Turner et al., 2015). A similar averaging time requirement applies 866 
to SCIAMACHY (2003-2005), which has denser observations but coarser precision and a 867 
smaller fraction of successful retrievals (F = 0.09). GOSAT-2 with an expected single-retrieval 868 
precision of 0.4% would reduce this time to about 4 months. TROPOMI will have full daily 869 
coverage of the Barnett Shale region with about 1,000 observing pixels, thus quantifying the 870 
regional emissions in a single day of observation.  871 

Consider now the problem of detecting individual point sources through observations of 872 
the corresponding source pixels. We estimate for the different solar back-scatter instruments of 873 
Table 1 the detection threshold at the scale of a satellite pixel, and for a single observation pass, 874 
assuming low emissions in neighboring pixels (to characterize a local background) and clear 875 
skies (for favorable retrieval conditions). The enhancement ∆X in the source pixel is given by 876 
equation (13) but with W now representing the pixel size and with N =1 and F = 1 in equation 877 
(12). By combining equations (12) and (13) we derive the minimum source Qmin for single-pass 878 
detection as 879 

 880 

 4
min

CH

a

M UWpqQ
M g

σ
=   (14) 881 

 882 
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 Table 2 gives the detection thresholds for the different satellite instruments with U = 5 883 
km h-1. These values can be compared to detailed point source information available for the US. 884 
Figure 8 shows the high end of the distributions of annual emissions for (1) the gridded  885 
0.1o×0.1o EPA inventory of Maasakkers et al. (2016), and (2) the 6887 individual point sources 886 
reporting methane emissions to the EPA Greenhouse Gas Reporting Program (GHGRP). 887 
Reporting to the GHGRP is required for all sources in excess of 25 Gg CO2 equivalent a-1 888 
(corresponding to 0.1 tons CH4 h-1 for a pure methane source). The GHGRP data include 889 
combustion sources with very low methane emissions, hence Figure 8 only shows the top 15th 890 
percentile of point sources (accounting for 85% of total GHGRP methane emissions). The largest 891 
point sources in the GHGRP data with emissions in excess of 1 ton h-1 are underground coal 892 
mines and landfills; individual point sources from oil/gas systems (compressor stations, 893 
processing plants) are smaller. Emissions from natural gas production (including wells and 894 
gathering stations) are reported to the GHGRP as basin totals instead of as point sources and are 895 
thus not included in the point source distribution of Fig. 8 (but are included in the gridded 896 
emissions). Individual “super-emitters” in oil/gas fields can emit in excess of 1 ton h-1 but likely 897 
on an intermittent basis (Zavala-Areiza et al., 2015; Lyon et al., 2015).  898 

Pixel resolution of the satellite instrument can be a limiting factor for detecting individual 899 
point sources because these are often clustered on a 1-10 km scale (as in an oil/gas field) and/or 900 
overlap with large area sources (gas distribution, livestock) (Lyon et al., 2015). For a satellite 901 
instrument with pixel resolution ~10 km, the  frequency distribution of gridded 0.1o×0.1o 902 
(≈10×10 km2) emissions in Fig. 8 is more relevant than that of GHGRP point sources.  903 

Comparison of the detection thresholds in Table 2 to the emission distributions in Fig. 8 904 
offers insight into the capabilities of the different instruments for resolving point sources. With a 905 
detection limit of 4 tons h-1 (for a wind of 5 km h-1), TROPOMI can detect in a single pass the 20 906 
highest 0.1o × 0.1o pixels in the gridded EPA inventory, contributing 5% of national emissions. It 907 
would not detect a typical transient “super-emitter” of 1.0 tons h-1 in an oil/gas field in a single 908 
overpass. Because of its full daily coverage, TROPOMI can be far more effective at detecting 909 
sustained point sources and quantifying their annual emissions. For 365 successive passes (once 910 
a day) and a successful retrieval rate of 17%, TROPOMI should be able to isolate individual 911 
pixel sources of 0.5 tons h-1, representing the top 1% of 0.1o × 0.1o gridsquares in the EPA 912 
inventory and amounting to 30% of total US emissions. GOSAT-2 has a similar single-pass 913 
sensitivity to point sources as TROPOMI when observing in target mode but has much sparser 914 
coverage. 915 

GHGSat and CarbonSat are designed for observation of point sources. If it meets its 916 
specifications of Table 1, GHGSat will have a single-pass detection threshold of 0.24 tons h-1 917 
(for a wind of 5 km h-1). This will detect 700 of the GHGRP point sources in Fig. 8, 918 
corresponding to 80% of the national total in the GHGRP point source inventory. A single 919 
GHGSat instrument will have a return time of 2 weeks, limiting its ability to detect transient 920 
“super-emitters”, but long-term plans are for a fleet of instruments on microsatellites. 921 

Bovensmann et al. (2010) give a CarbonSat detection threshold of 0.24 tons h-1 for U = 5 922 
km h-1, based on inversion of data from a transported Gaussian plume. We find a threshold of 0.8 923 
tons h-1 for single-pixel detection. Mapping of the methane plume in downwind pixels offers 924 
additional opportunity for detecting/quantifying a point source as long as there is no overlap with 925 
other sources and some model of plume transport is applied. Bovensmann et al. (2010) did not 926 
include transport error in their analysis which may lead to overoptimistic results. With 2×2 km2 927 
pixel resolution, CarbonSat would be limited in its ability to resolve the structure of individual 928 
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methane plumes, as airborne mapping shows plumes to be smaller in scale even for large point 929 
sources (Krings et al., 2013; Thorpe et al., 2016; Frankenberg et al., 2016). The 0.05×0.05 km2 930 
resolution of GHGSat, with imaging over a 12 × 12 km2grid, has better potential for resolving 931 
the plume structure. A complication in remote sensing of plumes with sub-km pixels is that one 932 
may not assume that the incident and reflected solar rays (Fig. 2) sample the same boundary 933 
layer methane column. The air mass factor calculation must trace the propagation of the incident 934 
and reflected solar rays through the plume, taking into account the solar azimuth and zenith 935 
angles as well as the altitude of the plume.  936 

Several approaches have been used to exploit downwind plume information for inferring 937 
point source emissions, including (1) inverse modeling with source strength and dispersion 938 
parameters as state variables (Krings et al., 2011, 2013), (2) integrating the flux over the plume 939 
cross-section normal to wind direction  (Conley et al., 2016), and (3) summing the above-940 
background mass in all plume pixels and relating this integrated mass enhancement to emission 941 
by using a relationship from known sources or a plume dispersion model (Frankenberg et al., 942 
2016). Choice of the best approach may depend on the level of meteorological information 943 
available and the ability of the instrument to map the observed plume structure, which in turn 944 
depends on the pixel size, the measurement noise, the ability to define the local background, and 945 
the complexity of the flow including the effect of wind shear (Rayner et al., 2014). 946 

Geostationary observations can in principle achieve high precision together with fine 947 
pixel resolution because the viewing geometry allows much longer observation times. But there 948 
is competing demand for spatial coverage. GEO-CAPE and geoCARB in their proposed 949 
implementations (Table 1) expect to achieve 1% precision for ~4×4 km2 pixels, limited by their 950 
stated mission objectives to observe continental-scale domains every hour or few hours.  With 951 
this implementation and the above assumptions, a regional source such as the Barnett Shale is 952 
strongly constrained on an hourly basis while a point source of 1.0 ton h-1 would require a week 953 
of observation (Table 2). GeoFTS expects to achieve <0.2% precision, greatly increasing the 954 
capability to observe transient point sources.  Point sources could be detected on a sub-daily time 955 
scale from geostationary orbit by adopting longer viewing times per pixel and/or using finer 956 
pixels. This could be achieved by limiting the domain of observation or by using “special 957 
observations” where the instrument is maneuvered to stare at specific points of interest. For 958 
example, detection of an anomaly in emissions, either from the satellite or from suborbital 959 
observations, could motivate targeted observation by the satellite to localize and quantify the 960 
anomaly. A schedule of alternate days for continental-scale mapping and for special observations 961 
could be particularly effective in enabling a geostationary mission to effectively quantify 962 
emissions at the national and regional scales while also providing fast detection and 963 
quantification of point sources.   964 

Airborne remote sensing offers another way to observe methane emissions from point 965 
sources, using the same techniques as satellite remote sensing but with much higher spatial 966 
resolution.  MAMAP (Krings et al., 2011) retrieves methane in the SWIR at 1.6µm, similar to 967 
SCIAMACHY, but currently lacks imaging capabilities. Imaging spectrometers initially 968 
designed for surface remote sensing have been shown to detect methane plumes with spatial 969 
resolution as fine as 1 m either in the SWIR using the strong 2.3 µm band (Roberts et al., 2010; 970 
Thorpe et al,, 2016)) or in the TIR (Tratt et al, 2014; Hulley et al, 2016). These imaging 971 
spectrometers such as AVIRIS-NG (SWIR) and MAKO or HyTES (TIR) have much coarser 972 
spectral resolution than MAMAP or current satellite instruments (e.g., 5 nm for AVIRIS-NG). 973 
However, at this fine spatial resolution, concentration enhancements over point sources are much 974 
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higher and can be discerned down to a detection threshold only 2 kg h-1 (Thorpe et al., 2016). A 975 
major advantage is that the fine structure of the plume shape can be observed, allowing for 976 
localized source attribution (Thompson et al., 2015; Thorpe et al, 2016). 977 
 978 
5. Conclusions and recommendations 979 

 980 
We have reviewed the capabilities for observing atmospheric methane from space and 981 

their utility for improving knowledge of methane emissions through inverse analyses. 982 
Observations by solar backscatter in the shortwave infrared (SWIR) are of most interest for 983 
quantifying emissions because they are sensitive to the full atmospheric column down to the 984 
surface. Current observations from the GOSAT satellite are of high quality but sparse. Through 985 
inverse analyses and annual averaging they can quantify emissions in source regions on a 100-986 
1000 km scale. The TROPOMI instrument to be launched in late 2016 will be able to map 987 
emissions daily on that scale and will also have the capability to detect and quantify large point 988 
sources. As such it will significantly enhance the value of satellite measurements to serve the 989 
needs of climate policy. The GHGSat instrument launched in 2016 with 50 × 50 m2  pixel 990 
resolution over 12 ×12 km2 viewing domains will effectively detect methane point sources if it 991 
meets its specification of 1-5% precision.  992 

The ultimate goal of top-down inverse analyses of atmospheric observations is to guide 993 
the improvement of bottom-up emission inventories. Bottom-up inventories relate emissions to 994 
the underlying processes, and as such are the fundamental tools for climate policy and for 995 
making future projections. There is the opportunity for considerable synergy between top-down 996 
and bottom-up approaches by using high-quality bottom-up inventories as prior estimates in 997 
inversions, and then using inversion results to improve the inventories. Exploiting this synergy 998 
requires the construction of finely gridded, sector-resolved bottom-up inventories including 999 
scale-dependent error statistics.  1000 

Geostationary observations (still at the proposal stage) hold considerable potential for 1001 
monitoring methane emissions from space. The geostationary orbit allows sustained staring at 1002 
individual pixels, providing a unique opportunity to infer emissions with both high spatial and 1003 
temporal resolution on national scales. Current geostationary mission concepts (GEO-CAPE, 1004 
geoCARB. GeoFTS) emphasize hourly mapping of emissions at the continental scale. This limits 1005 
their pixel resolution and their precision. It is not clear that high-frequency continental-scale 1006 
mapping from geostationary orbit is of much value if sufficient information is already available 1007 
from a LEO instrument such as TROPOMI. It may be more effective for a geostationary mission 1008 
to focus on selective observation of point sources and source regions, enabling finer pixel 1009 
resolution and longer viewing times to resolve emissions at local scale including transient 1010 
sources. 1011 

More work needs to be done in exploiting correlative observations to increase the value 1012 
of methane satellite data. Observations of ammonia from space are becoming mature and provide 1013 
a marker of livestock emissions. Joint observations of methane and CO as from TROPOMI may 1014 
help to reduce model transport error in inversions through methane-CO error correlations. 1015 
Satellite mapping of surface properties can provide important correlative information, as already 1016 
demonstrated for wetlands. Satellite data for soil moisture, gas flaring, and imagery of point 1017 
sources could be integrated with available methane data to more effectively constrain methane 1018 
emissions.  1019 
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Suborbital observations of methane from aircraft and from the ground are essential 1020 
partners to satellite observation. Suborbital observations have unique capability for correlative 1021 
measurements such as methane isotopes and ethane that can provide additional constraints on 1022 
inversions. Methane anomalies detected from space need to be confirmed by field observations, 1023 
which can pinpoint sources with far greater accuracy (down to the device scale) than is 1024 
achievable from space. Suborbital platforms are also essential for continual validation of the 1025 
satellite data. The prospect of improving satellite observations in the near future calls for the 1026 
construction of a comprehensive atmospheric methane observing system to monitor emissions 1027 
from global to local scales through coordination with improved suborbital observations, bottom-1028 
up inventories, and atmospheric transport models.   1029 
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Table 1. Satellite instruments for measuring tropospheric methanea 1422 
Instrument Agencyb Data period Overpass  time  

[local] 
Fitting window [nm] 
(spectral resolution) 

Pixel size 
[km2]c 

Coveraged Precisione Reference 

Low Earth Orbitf         
   Solar backscatter         
      SCIAMACHY ESA 2003-2012 10:00 1630-1670 (1.4)g 30×60  6 days 1.5 %h Frankenberg et al. (2006) 
      GOSATi JAXA 2009- 13:00 1630-1700 (0.06) 10×10 3 daysj 0.7 % Kuze et al. (2016) 
      TROPOMI ESA 2016- 13:30 2310-2390 (0.25) 7×7 1 day 0.6% Butz et al. (2012) 
      GHGSat GHGSat, Inc. 2016- 09:30 1600-1700 (0.1) 0.05x0.05k 12×12 km2 gridl 1-5% Footnotem 

      GOSAT-2 JAXA 2018- 13:00 1630-1700, 2330-2380 (0.06) 10x10 3 daysj 0.4% Glumb et al. (2014) 
      CarbonSat ESA proposed  1590-1680 (0.3) 2×2 5-10 days 0.4% Buchwitz et al. (2013) 
   Thermal emission         
       IMG MITI 1996-1997 10:30/22:30 7100-8300 (0.7) 8×8 along track 4% Clerbaux et al. (2003) 
      AIRS NASA 2002- 13:30/01:30 6200-8200 (7) 45×45 0.5 days 1.5 % Xiong et al. (2008) 
      TES NASA 2004-2011 13:30/01:30 7580-8850 (0.8) 5×8 along track 1.0 % Worden et al. (2012) 
      IASI EUMETSAT 2007- 09:30/21:30 7100-8300 (1.5) 12×12 0.5 days 1.2 % Xiong et al. (2013) 
      CrIS NOAA 2011- 13:30/01:30 7300-8000 (1.6) 14×14 0.5 days 1.5% Barnet et al. (2014) 
   Active (lidar)         
      MERLIN DLR/CNES 2020- 13:30/01:30 1645.552/1645.846n pencil along track 1.0%o Kiemle et al. (2011, 2014) 
Geostationary         
      GEO-CAPEp NASA proposed continuous 2300 nm band 4×4q 1 hourr 1.0% Fishman et al. (2012) 
      GeoFTS NASA proposed continuous 1650 and 2300 nm bands 3×3q 2 hoursr <0.2% Xi et al. (2015) 
      geoCARB NASA proposed continuous 2300 nm band 4×5q 2-8 hoursr 1.0% Polonsky et al. (2014) 

a Solar occultation and limb instruments measuring methane in the stratosphere are referenced in Sect. 3.2. 1423 
b ESA = European Space Agency; JAXA = Japan Aerospace Exploration Agency; MITI = Japan Ministry of 1424 

International Trade and Industry; NASA = US National Aeronautics and Space Administration; EUMETSAT = 1425 
European Organization for the Exploitation of Meteorological Satellites; DLR = German Aerospace Center; CNES = 1426 
French National Center for Space Studies. GHGSat, Inc. is a private Canadian company. 1427 

c At the subsatellite point. 1428 
d Time required for full global coverage (low Earth orbit) or continental coverage (geostationary orbit).  Solar 1429 

backscatter and lidar instruments observe the full methane column with near-uniform sensitivity, while thermal 1430 
emission instruments are limited to the middle/upper troposphere (Fig. 3). Solar backscatter instruments observe only in 1431 
the daytime and over land (except for sunglint observations).  1432 

e 1-σ uncertainty for single observations. 1433 
f All in polar sun-synchronous orbit,  observing at a fixed time of day (see “overpass time” column). 1434 
g SCIAMACHYalso had a 2.3 µm band intended for operational methane retrievals (Gloudemans et al., 2008) but this 1435 

was abandoned due to poor detector performance. 1436 
h Precision for 2003-2005 observations, after which the instrument degraded (Frankenberg et al., 2011). The average 1437 

single-observation precision for the 2003-2012 record is 3-5% (Buchwitz et al., 2015). 1438 
i TANSO-FTS instrument aboard  the GOSAT satellite. We refer to the instrument in the text as “GOSAT” following 1439 

common practice. 1440 
j Repeated observations at 3 cross-track pixels about 260 km apart and with 260 km along-track separation. GOSAT 1441 

can also adjust its pointing to observe specific targets.  1442 
k GHGSat’s ground sampling distance is 23 m (512 pixels span the 12 km field of view), but imaging resolution is 1443 

anticipated to be about 50 m (limited by telescope focus).  1444 
l With revisit time of 2 weeks. 1445 
m Unpublished information from GHGSat, Inc. Description of the GHGSat instrument can be found in Brakeboer 1446 

(2015). 1447 
n  On-line/off-line. 1448 
o Monthly average along 50-km tracks. 1449 
p Specifications from the proposed CHRONOS implementation of GEO-CAPE 1450 

(https://www2.acom.ucar.edu/chronos). 1451 
q At roughly 30o latitude; the pixel latitudinal dimension increases with latitude. 1452 
r Over a continental-scale domain. 1453 

 1454 
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Table 2. Capability for observing regional and point sources of methane from space 1456 
 1457 
Instrumenta Regional source quantification 

(Q =72 tons h-1 over 300×300 km2)b 
Point source detection thresholdc 

(Qmin , tons h-1) 

SCIAMACHY 1 year averaging time 68 
GOSAT 1 year averaging time 7.0 
TROPOMI single pass 4.2 
GHGSat NAd 0.24e 

GOSAT-2 4 months averaging time 4.0 
CarbonSat single pass 0.80 
GEO-CAPE, geoCARB 1 hour 4.0 

GeoFTS 1 hour 0.8f 

a See Table 1 for instrument specifications. 1458 
b example of the Barnett Shale region in Northeast Texas (Lyon et al., 2015) 1459 
c For a single observing pass. Detectability scales as Q/U and is given here for a wind speed U = 5 km h-1. 1460 
d Not applicable. GHGSat has a 12×12 km2 viewing domain, designed to observe point sources. 1461 
e Assuming 5% precision. 1462 
f Assuming 0.2% precision 1463 
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 1465 
 1466 
Figure 1.  US national emission inventory for methane in 2012 compiled by the US EPA (2016). 1467 
Units are Tg a-1. 1468 
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 1470 

  1471 
 1472 
Figure 2. Configurations for observing methane from space in the shortwave infrared (SWIR) 1473 
and in the thermal infrared (TIR). Here θ is the solar zenith angle, θv 

 is the satellite viewing 1474 
angle, B(λ,T) is the blackbody function of wavelength  λ and temperature T  (To at the surface, T1 1475 
at the altitude of the emitting methane), and dτ  is an elemental methane optical depth.  Satellite 1476 
instruments operating in the different configurations are identified in the Figure and listed in 1477 
Table 1. 1478 
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 1480 
 1481 

 1482 
 1483 
Figure 3. Typical sensitivities as a function of altitude (pressure) for satellite observation of 1484 
atmospheric methane in the SWIR and in the TIR. The sensitivities are the elements of the 1485 
averaging kernel vector a at different pressure levels (Eq. (1)). Adapted from Worden et al. 1486 
(2015).   1487 
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 1489 
Figure 4. Atmospheric optical depths of major trace gases in the spectral region 1.5-2.5 μm.  The 1490 
calculation is for the US Standard Atmosphere (Anderson et al., 1986) with surface 1491 
concentrations adjusted to 399 ppm CO2, 1.9 ppm methane, 330 ppb N2O, and 80 ppb CO. The 1492 
line-by-line data are smoothed with a spectral resolution of 0.1 nm (full width at half maximum).  1493 
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 1495 
 1496 

Figure 5. Global and US distributions of methane dry-air column mole fractions (XCH4) observed 1497 
by SCIAMACHY and GOSAT.  Values are annual means for 2003-2004 (SCIAMACHY) and 1498 
2010-2013 (GOSAT), using the CO2 proxy retrievals from Frankenberg et al. (2011) for 1499 
SCIAMACHY and Parker et al. (2011) for GOSAT. GOSAT includes observations of sunglint 1500 
over the oceans. The colorbar is shifted by 30 ppb between the SCIAMACHY and GOSAT 1501 
panels to account for the global growth of methane from 2003-2004 to 2010-2013. All data are 1502 
plotted on a 0.5o×0.5o grid except for the GOSAT global panel where a 1o×1o grid is used to 1503 
improve visibility.   1504 
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 1506 

 1507 
 1508 

Figure 6.  Generic design of an observing system simulation experiment (OSSE) to evaluate the 1509 
potential of a proposed new atmospheric instrument to improve knowledge of emissions relative 1510 
to the current observing system.  1511 
 1512 
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 1514 
 1515 
Figure 7.  Effect of smoothing and aggregation errors in a high-resolution inversion of methane 1516 
emissions using SCIAMACHY observations of methane columns for summer 2004.  The top left 1517 
panel shows the correction factors to prior emissions when attempting to optimize emissions at 1518 
the native 1/2o×2/3o grid resolution of the chemical transport model (n = 7906). The top right 1519 
panel shows the same inversion but with a reduced state vector (n = 1000) constructed by 1520 
hierarchical clustering of the native-resolution grid cells (bottom left panel). The bottom right 1521 
panel shows the ability of the inversion to fit the satellite observations as the state vector 1522 
dimension is decreased from n = 7906 to n = 3 by hierarchical clustering. The quality of the fit is 1523 
measured by the observational terms of the cost function for the inversion. Optimal results are 1524 
achieved for n in the range 300-1,000. Finer resolution incurs large smoothing errors, while 1525 
coarser resolution incurs large aggregation errors. Adapted from Wecht et al. (2014a).  1526 
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 1528 
 1529 

Figure 8. Cumulative frequency distribution of spatially resolved annual mean methane 1530 
emissions in the contiguous US. The left panel shows the distribution of emissions at 0.1o×0.1o 1531 
resolution in the gridded US EPA inventory for 2012 (Maasakkers et al., 2016). The right panel 1532 
shows the distribution of point source emissions in the Greenhouse Gas Reporting Program 1533 
(GHGRP) data for 2012. The highest sources are colored by sector. The x-axis is a normal 1534 
cumulative probability scale such that a lognormal distribution would plot as a straight line. The 1535 
cumulative relative contribution to the national total emissions is shown as the top axis.  As an 1536 
example of how to read these plots, the top 1% of GHGRP point source emissions (99th quantile 1537 
in the right panel) includes n = 6887/99 = 69 point sources larger than 1.2 tons h-1 and 1538 
contributes 71% of total US point source emissions in the GHGRP inventory.  1539 
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