Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
doi:10.5194/acp-2016-312
© Author(s) 2016. This work is distributed
under the Creative Commons Attribution 3.0 License.
Research article
09 May 2016
Review status
A revision of this discussion paper was accepted for the journal Atmospheric Chemistry and Physics (ACP) and is expected to appear here in due course.
Role of vertical and horizontal mixing in the tape recorder signal near the tropical tropopause
Anne A. Glanville and Thomas Birner Department of Atmospheric Science, Colorado State University, Fort Collins, CO, USA
Abstract. Nearly all air enters the stratosphere through the tropical tropopause layer (TTL). The TTL therefore exerts a control on stratospheric chemistry and climate. The hemispheric meridional overturning (Brewer-Dobson) circulation spreads this TTL influence upward and poleward. Stratospheric water vapor concentrations are set near the tropical tropopause and are nearly conserved in the lowermost stratosphere. The resulting upward propagating tracer transport signal of seasonally varying entry concentrations is known as the tape recorder signal. Here, we study the roles of vertical and horizontal mixing in shaping the tape recorder signal in the tropical lowermost stratosphere. We analyze the tape recorder signal using data from satellite observations, a reanalysis, and a chemistry-climate model (CCM). Modifying past methods, we are able to capture the seasonal cycle of effective vertical transport velocity in the tropical lowermost stratosphere, which is found to be multiple times stronger than residual vertical velocities for the reanalysis and the CCM. We also study the tape recorder signal in an idealized one-dimensional transport model. By performing a parameter-sweep we test a range of different strengths of transport contributions by vertical advection, vertical mixing, and horizontal mixing. Introducing seasonality in the transport strengths we find that the most successful simulation of the observed tape recorder signal requires quadrupled vertical mixing in the lowermost tropical stratosphere compared to previous estimates in the literature. Vertical mixing is especially important during boreal summer when vertical advection is weak. The reanalysis requires excessive amounts of vertical mixing compared to observations but also to the CCM, which hints at the role of spurious dispersion due to data assimilation. Contrasting the results between pressure and isentropic coordinates allows further insights into quasi-adiabatic vertical mixing, e.g. associated with breaking gravity waves. Horizontal mixing, which takes place primarily along isentropes due to Rossby wave breaking, is captured more consistently in isentropic coordinates. Overall our study emphasizes the role of vertical mixing in lowermost tropical stratospheric transport, which appears to be as important as vertical advection by the residual mass circulation. This questions the perception of the "tape recorder" as a manifestation of slow upward transport as opposed to a phenomenon influenced by quick and intense transport through mixing, at least near the tape head.

Citation: Glanville, A. A. and Birner, T.: Role of vertical and horizontal mixing in the tape recorder signal near the tropical tropopause, Atmos. Chem. Phys. Discuss., doi:10.5194/acp-2016-312, in review, 2016.
Anne A. Glanville and Thomas Birner
Anne A. Glanville and Thomas Birner

Viewed

Total article views: 398 (including HTML, PDF, and XML)

HTML PDF XML Total BibTeX EndNote
271 107 20 398 21 21

Views and downloads (calculated since 09 May 2016)

Cumulative views and downloads (calculated since 09 May 2016)

Saved

Discussed

Latest update: 26 Mar 2017
Publications Copernicus
Download
Short summary
Nearly all air enters the stratosphere through the tropical tropopause, which exerts a control on stratospheric chemistry and climate. We study the roles of vertical and horizontal mixing in transport at and just above the tropical tropopause. We find that vertical mixing in particular plays a significant role in lowermost tropical stratospheric transport, potentially as important as slow vertical transport by the residual mass circulation.
Nearly all air enters the stratosphere through the tropical tropopause, which exerts a control...
Share