Atmos. Chem. Phys. Discuss., 9, 6889-6927, 2009
www.atmos-chem-phys-discuss.net/9/6889/2009/
doi:10.5194/acpd-9-6889-2009
© Author(s) 2009. This work is distributed
under the Creative Commons Attribution 3.0 License.
Review Status
This discussion paper has been under review for the journal Atmospheric Chemistry and Physics (ACP). Please refer to the corresponding final paper in ACP.
Hygroscopic growth of urban aerosol particles in Beijing (China) during wintertime: a comparison of three experimental methods
J. Meier1, B. Wehner1, A. Massling1,*, W. Birmili1, A. Nowak1, T. Gnauk1, E. Brüggemann1, H. Herrmann1, H. Min2, and A. Wiedensohler1
1Leibniz Institute for Tropospheric Research, Leipzig, Germany
2College of Environmental Sciences, Peking University, Beijing, China
*now at: National Environmental Research Institute, Roskilde, Denmark

Abstract. This paper presents hygroscopicity measurements of aerosol particles in the urban atmosphere of Beijing carried out in January 2005. Therefore, three different methods were used: 1) Combining Humidifying Differential Mobility Particle Sizer (H-DMPS) and Twin Differential Mobility Particle Sizer (TDMPS) measurements; 2) Hygroscopicity Tandem Differential Mobility Analyzer (H-TDMA) technique; 3) Calculating hygroscopic growth factors on the basis of a solubility model quantified by Micro Orifice Uniform Deposit Impactor (MOUDI) samples. Particle number size distributions from H-DMPS and TDMPS were evaluated to derive size-resolved descriptive hygroscopic growth factors (DHGF) of 30–400 nm particles at relative humidities (RH) of 55%, 77% and 90%. The atmospheric particles in Beijing were rather hydrophobic, with a maximum growth factor in the accumulation mode around 1.40 (±0.03) at 90% RH. The descriptive hygroscopic growth factors decreased significantly towards the lower measurement limit (1.04 (±0.15) at Dp=30 nm). A good agreement was found between the DHGFs and the H-TDMA-derived hygroscopic growth factors in the accumulation mode (100–400 nm), the DHGFs underestimated the values from the H-TDMA in the Aitken mode (<100 nm) by up to 0.1 at 90% RH. The calculation of hygroscopic growth factors based on the measured chemical composition showed that different modes of combining the inorganic ions caused a variation in growth factor of 0.1 at 90% RH. The solubility model was able to reproduce the size-dependent trend in the growth factor found by the other methods. In two cases of ion-dominated aerosol, the composition-derived growth factors tended to agree (±0.05) or underestimate (up to 0.1) the values measured by the other two methods. In the case of the organic-dominated aerosol, the reverse was true, with an overestimation of up to 0.2. The results shed light on the real experimental and methodological uncertainties that are still connected with the determination of hygroscopic growth factors.

Citation: Meier, J., Wehner, B., Massling, A., Birmili, W., Nowak, A., Gnauk, T., Brüggemann, E., Herrmann, H., Min, H., and Wiedensohler, A.: Hygroscopic growth of urban aerosol particles in Beijing (China) during wintertime: a comparison of three experimental methods, Atmos. Chem. Phys. Discuss., 9, 6889-6927, doi:10.5194/acpd-9-6889-2009, 2009.
 
Search ACPD
Discussion Paper
    XML
    Citation
    Final Revised Paper
    Share