Atmos. Chem. Phys. Discuss., 9, 4727-4767, 2009
www.atmos-chem-phys-discuss.net/9/4727/2009/
doi:10.5194/acpd-9-4727-2009
© Author(s) 2009. This work is distributed
under the Creative Commons Attribution 3.0 License.
Review Status
This discussion paper has been under review for the journal Atmospheric Chemistry and Physics (ACP). Please refer to the corresponding final paper in ACP.
Photodegradation of secondary organic aerosol generated from limonene oxidation by ozone studied with chemical ionization mass spectrometry
X. Pan1, J. S. Underwood1,2, J.-H. Xing1,3, S. A. Mang1,4, and S. A. Nizkorodov1
1Department of Chemistry, University of California – Irvine, Irvine, CA 92697–2025, USA
2Department of Chemistry, Loyola University, New Orleans, LA 70118, USA
3Kyoto University Pioneering Research Unit for Next Generation, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
4Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, MD 2125, USA

Abstract. Photodegradation of secondary organic aerosol (SOA) prepared by ozone-initiated oxidation of D-limonene is studied with an action spectroscopy approach, which relies on detection of volatile photoproducts with chemical ionization mass-spectrometry as a function of the UV irradiation wavelength. Efficient photodegradation is observed for a broad range of ozone and D-limonene concentrations (0.1–300 ppm) used in the preparation of SOA. The observed photoproducts are dominated by oxygenated C1-C3 compounds such as methanol, formic acid, acetaldehyde, acetic acid, and acetone. The irradiation wavelength dependence of the combined yield of the photoproducts closely tracks the absorption spectrum of the SOA material suggesting that photodegradation is not limited to the UV wavelengths. Kinetic simulations suggest that RO2+HO2/RO2 reactions represent the dominant route to photochemically active carbonyl and peroxide species in the limonene SOA material. Similar photodegradation processes are likely to occur in realistic SOA produced by OH- or O3-initiated oxidation of biogenic volatile organic compounds in clean air.

Citation: Pan, X., Underwood, J. S., Xing, J.-H., Mang, S. A., and Nizkorodov, S. A.: Photodegradation of secondary organic aerosol generated from limonene oxidation by ozone studied with chemical ionization mass spectrometry, Atmos. Chem. Phys. Discuss., 9, 4727-4767, doi:10.5194/acpd-9-4727-2009, 2009.
 
Search ACPD
Discussion Paper
    XML
    Citation
    Final Revised Paper
    Share