Atmos. Chem. Phys. Discuss., 9, 411-462, 2009
www.atmos-chem-phys-discuss.net/9/411/2009/
doi:10.5194/acpd-9-411-2009
© Author(s) 2009. This work is distributed
under the Creative Commons Attribution 3.0 License.
Review Status
This discussion paper has been under review for the journal Atmospheric Chemistry and Physics (ACP). Please refer to the corresponding final paper in ACP.
Technical Note: Feasibility of CO2 profile retrieval from limb viewing solar occultation made by the ACE-FTS instrument
P. Y. Foucher1, A. Chédin1, G. Dufour2, V. Capelle1, C. D. Boone3, and P. Bernath3,4
1Laboratoire de Météorologie Dynamique/Institut Pierre Simon Laplace, Ecole Polytechnique, 91128 Palaiseau, France
2Laboratoire Inter-universitaire des Systèmes Atmosphériques, Faculté des Sciences et Technologies, 61 avenue du Général de Gaulle, 94010 Créteil, France
3Department of Chemistry, University of Waterloo, Ontario, N2L3G1, Canada
4Department of Chemistry, University of York, Heslington, York, UK.YO105DD, UK

Abstract. Major limitations of our present knowledge of the global distribution of CO2 in the atmosphere are the uncertainty in atmospheric transport mixing and the sparseness of in situ concentration measurements. Limb viewing space-borne sounders, observing the atmosphere along tangential optical paths, offer a vertical resolution of a few kilometres for profiles, which is much better than currently flying or planned nadir sounding instruments can achieve. In this paper, we analyse the feasibility of obtaining CO2 vertical profiles in the 5–25 km altitude range from the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS, launched in August 2003), high spectral resolution solar occultation measurements. Two main difficulties must be overcome: (i) the accurate determination of the instrument pointing parameters (tangent heights) and pressure/temperature profiles independently from an a priori CO2 profile, and (ii) the potential impact of uncertainties in the temperature knowledge on the retrieved CO2 profile. The first difficulty has been solved using the N2 collision-induced continuum absorption near 4 μm to determine tangent heights, pressure and temperature from the ACE-FTS spectra. The second difficulty has been solved by a careful selection of CO2 spectral micro-windows. Retrievals using synthetic spectra made under realistic simulation conditions show a vertical resolution close to 2.5 km and accuracy of the order of 2 ppm after averaging over 25 profiles. These results open the way to promising studies of transport mechanisms and carbon fluxes from the ACE-FTS measurements.

Citation: Foucher, P. Y., Chédin, A., Dufour, G., Capelle, V., Boone, C. D., and Bernath, P.: Technical Note: Feasibility of CO2 profile retrieval from limb viewing solar occultation made by the ACE-FTS instrument, Atmos. Chem. Phys. Discuss., 9, 411-462, doi:10.5194/acpd-9-411-2009, 2009.
 
Search ACPD
Discussion Paper
    XML
    Citation
    Final Revised Paper
    Share