Atmos. Chem. Phys. Discuss., 9, 3555-3762, 2009
www.atmos-chem-phys-discuss.net/9/3555/2009/
doi:10.5194/acpd-9-3555-2009
© Author(s) 2009. This work is distributed
under the Creative Commons Attribution 3.0 License.
Review Status
This discussion paper has been under review for the journal Atmospheric Chemistry and Physics (ACP). Please refer to the corresponding final paper in ACP.
The formation, properties and impact of secondary organic aerosol: current and emerging issues
M. Hallquist1, J. C. Wenger2, U. Baltensperger3, Y. Rudich4, D. Simpson5,6, M. Claeys7, J. Dommen3, N. M. Donahue8, C. George9,10, A. H. Goldstein11, J. F. Hamilton12, H. Herrmann13, T. Hoffmann14, Y. Iinuma13, M. Jang15, M. Jenkin16, J. L. Jimenez17, A. Kiendler-Scharr18, W. Maenhaut19, G. McFiggans20, Th. F. Mentel18, A. Monod21, A. S. H. Prévôt3, J. H. Seinfeld22, J. D. Surratt23, R. Szmigielski7, and J. Wildt18
1Department of Chemistry, Atmospheric Science, University of Gothenburg, 41296, Gothenburg, Sweden
2Department of Chemistry and Environmental Research Institute, University College Cork, Cork, Ireland
3Laboratory of Atmospheric Chemistry, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
4Department of Environmental Sciences, Weizmann Institute, Rehovot 76100, Israel
5EMEP MSC-W, Norwegian Meteorological Institute, P.B. 32 Blindern, 0313 Oslo, Norway
6Department of Radio and Space Science, Chalmers University of Technology, 41296, Gothenburg, Sweden
7Department of Pharmaceutical Sciences, University of Antwerp (Campus Drie Eiken), Universiteitsplein 1, 2610 Antwerp, Belgium
8Center for Atmospheric Particle Studies, Carnegie Mellon Univ., Pittsburgh PA 15213, USA
9Université de Lyon, Lyon, 69626, France
10CNRS, UMR5256, IRCELYON, Institut de recherches sur la catalyse et l'environnement de Lyon, Villeurbanne, 69626, France
11Department of Environmental Science, Policy and Management, University of California, Berkeley, CA, USA
12Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
13Leibniz-Institut für Troposphärenforschung, Permoserstrasse 15, 04318 Leipzig, Germany
14Johannes Gutenberg-Universität, Institut für Anorganische und Analytische Chemie, Duesbergweg 10–14, 55128 Mainz, Germany
15Department of Environmental Engineering Sciences, P.O. Box 116450, University of Florida, Gainesville, FL 32611-6450, USA
16Imperial College London, Centre for Environmental Policy, Silwood Park, Ascot, Berkshire, SL5 7PY, UK
17Department of Chemistry & Biochemistry; and CIRES, University of Colorado; UCB 216, Boulder, CO 80309-0216, USA
18Institut für Chemie und Dynamik der Geosphäre, ICG, Forschungszentrum Jülich, 52425 Jülich, Germany
19Department of Analytical Chemistry, Institute for Nuclear Sciences, Ghent University, Proeftuinstraat 86, 9000 Ghent, Belgium
20Centre for Atmospheric Sciences, School of Earth, Atmospheric & Environmental Sciences, University of Manchester, Simon Building, Manchester, M13 9PL, UK
21Laboratoire Chimie de Provence, UMR-CNRS 6264/Université de Aix-Marseille I, II and III, 3 place Victor Hugo – Case 29, 13331 Marseille Cedex 3, France
22Departments of Chemical Engineering and Environmental Science and Engineering, California Institute of Technology, Pasadena, CA 91125, USA
23Department of Chemistry, California Institute of Technology, Pasadena, CA 91125, USA

Abstract. Secondary organic aerosol (SOA) accounts for a significant fraction of ambient tropospheric aerosol and a detailed knowledge of the formation, properties and transformation of SOA is therefore required to evaluate its impact on atmospheric processes, climate and human health. The chemical and physical processes associated with SOA formation are complex and varied, and, despite considerable progress in recent years, a quantitative and predictive understanding of SOA formation does not exist and therefore represents a major research challenge in atmospheric science. This review begins with a description of the current state of knowledge on the global SOA budget and the atmospheric degradation mechanisms for SOA precursors. The topic of gas-particle partitioning theory is followed by an account of the analytical techniques used to determine the chemical composition of SOA. A survey of recent laboratory, field and modeling studies is also presented. The following topical and emerging issues are highlighted and discussed in detail; molecular characterization of biogenic SOA constituents, condensed phase reactions and oligomerization, the interaction of atmospheric organic components with sulfuric acid, the chemical and photochemical processing of organics in the atmospheric aqueous phase, aerosol formation from real plant emissions, interaction of atmospheric organic components with water, thermodynamics and mixtures in atmospheric models. Finally, the major challenges ahead in laboratory, field and modeling studies of SOA are discussed and recommendations for future research directions are proposed.

Citation: Hallquist, M., Wenger, J. C., Baltensperger, U., Rudich, Y., Simpson, D., Claeys, M., Dommen, J., Donahue, N. M., George, C., Goldstein, A. H., Hamilton, J. F., Herrmann, H., Hoffmann, T., Iinuma, Y., Jang, M., Jenkin, M., Jimenez, J. L., Kiendler-Scharr, A., Maenhaut, W., McFiggans, G., Mentel, Th. F., Monod, A., Prévôt, A. S. H., Seinfeld, J. H., Surratt, J. D., Szmigielski, R., and Wildt, J.: The formation, properties and impact of secondary organic aerosol: current and emerging issues, Atmos. Chem. Phys. Discuss., 9, 3555-3762, doi:10.5194/acpd-9-3555-2009, 2009.
 
Search ACPD
Discussion Paper
    XML
    Citation
    Final Revised Paper
    Share