Atmos. Chem. Phys. Discuss., 9, 2791-2822, 2009
www.atmos-chem-phys-discuss.net/9/2791/2009/
doi:10.5194/acpd-9-2791-2009
© Author(s) 2009. This work is distributed
under the Creative Commons Attribution 3.0 License.
Review Status
This discussion paper has been under review for the journal Atmospheric Chemistry and Physics (ACP). Please refer to the corresponding final paper in ACP.
Inferring ozone production in an urban atmosphere using measurements of peroxynitric acid
K. M. Spencer1, D. C. McCabe2,*, J. D. Crounse1, J. R. Olson3, J. H. Crawford3, A. J. Weinheimer4, D. J. Knapp4, D. D. Montzka4, C. A. Cantrell4, R. S. Anderson4, R. L. Mauldin III4, and P. O. Wennberg2,5
1Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
2Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
3NASA Langley Research Center, Hampton, VA, USA
4National Center for Atmospheric Research, Boulder, CO, USA
5Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
*now at: AAAS Science & Technology Policy Fellow, United States Environmental Protection Agency, Washington, DC, USA

Abstract. Observations of peroxynitric acid (HO2NO2) obtained simultaneously with those of NO and NO2 provide a sensitive measure of the ozone photochemical production rate. We illustrate this technique for constraining the ozone production rate with observations obtained from the NCAR C-130 aircraft platform during the Megacity Initiative: Local and Global Research Observations (MILAGRO) intensive in Mexico during the spring of 2006. Sensitive and selective measurements of HO2NO2 were made in situ using chemical ionization mass spectrometry (CIMS). Observations were compared to modeled HO2NO2 concentrations obtained from the NASA Langley highly-constrained photochemical time-dependent box model. The median observed-to-calculated ratio of HO2NO2 is 1.18. At NOx levels greater than 15 ppbv, the photochemical box model underpredicts observations with an observed-to-calculated ratio of HO2NO2 of 1.57. As a result, we find that at high NOx, the ozone production rate calculated using measured HO2NO2 is faster than predicted using accepted photochemistry. Inclusion of an additional HOx source from the reaction of excited state NO2 with H2O or reduction in the rate constant of the reaction of OH with NO2 improves the agreement.

Citation: Spencer, K. M., McCabe, D. C., Crounse, J. D., Olson, J. R., Crawford, J. H., Weinheimer, A. J., Knapp, D. J., Montzka, D. D., Cantrell, C. A., Anderson, R. S., Mauldin III, R. L., and Wennberg, P. O.: Inferring ozone production in an urban atmosphere using measurements of peroxynitric acid, Atmos. Chem. Phys. Discuss., 9, 2791-2822, doi:10.5194/acpd-9-2791-2009, 2009.
 
Search ACPD
Special Issue
Discussion Paper
    XML
    Citation
    Final Revised Paper
    Share