Atmos. Chem. Phys. Discuss., 9, 25633-25661, 2009
www.atmos-chem-phys-discuss.net/9/25633/2009/
doi:10.5194/acpd-9-25633-2009
© Author(s) 2009. This work is distributed
under the Creative Commons Attribution 3.0 License.
Review Status
This discussion paper has been under review for the journal Atmospheric Chemistry and Physics (ACP). Please refer to the corresponding final paper in ACP.
Total aerosol effect: radiative forcing or radiative flux perturbation?
U. Lohmann1, L. Rotstayn2, T. Storelvmo1, A. Jones3, S. Menon4, J. Quaas5, A. Ekman6, D. Koch7, and R. Ruedy7
1Institute of Atmospheric and Climate Science, ETH Zurich, Switzerland
2Centre for Australian Weather and Climate Research, CSIRO, Aspendale, Victoria, Australia
3Met Office Hadley Centre, Exeter, UK
4Lawrence Berkeley National Laboratory, Berkeley, USA
5Max Planck Institute for Meteorology, Hamburg, Germany
6Stockholm University, Stockholm, Sweden
7NASA GISS, New York, NY, USA

Abstract. Uncertainties in aerosol radiative forcings, especially those associated with clouds, contribute to a large extent to uncertainties in the total anthropogenic forcing. The interaction of aerosols with clouds and radiation introduces feedbacks which can affect the rate of rain formation. In former assessments of aerosol radiative forcings, these effects have not been quantified. Also, with global aerosol-climate models simulating interactively aerosols and cloud microphysical properties, a quantification of the aerosol forcings in the traditional way is difficult to properly define. Here we argue that fast feedbacks should be included because they act quickly compared with the time scale of global warming. We show that for different forcing agents (aerosols and greenhouse gases) the radiative forcings as traditionally defined agree rather well with estimates from a method, here referred to as radiative flux perturbations (RFP), that takes these fast feedbacks and interactions into account. Based on our results, we recommend RFP as a valid option to compare different forcing agents, and to compare the effects of particular forcing agents in different models.

Citation: Lohmann, U., Rotstayn, L., Storelvmo, T., Jones, A., Menon, S., Quaas, J., Ekman, A., Koch, D., and Ruedy, R.: Total aerosol effect: radiative forcing or radiative flux perturbation?, Atmos. Chem. Phys. Discuss., 9, 25633-25661, doi:10.5194/acpd-9-25633-2009, 2009.
 
Search ACPD
Discussion Paper
    XML
    Citation
    Final Revised Paper
    Share