Atmos. Chem. Phys. Discuss., 9, 24477-24510, 2009
www.atmos-chem-phys-discuss.net/9/24477/2009/
doi:10.5194/acpd-9-24477-2009
© Author(s) 2009. This work is distributed
under the Creative Commons Attribution 3.0 License.
Review Status
This discussion paper has been under review for the journal Atmospheric Chemistry and Physics (ACP). Please refer to the corresponding final paper in ACP.
Impact of mineral dust on nitrate, sulfate, and ozone in transpacific Asian pollution plumes
T. D. Fairlie1,2, D. J. Jacob2,3, J. E. Dibb4, B. Alexander5, M. A. Avery1, A. van Donkelaar6, and L. Zhang2
1NASA Langley Research Center, Hampton, VA 23681-0001, USA
2Dept. Earth and Planetary Sciences, Harvard University, Cambridge, MA 02138, USA
3Division of Engineering and Applied Science, Harvard University, Cambridge, MA 02138 USA
4Climate Change Research Center, University of New Hampshire, Durham, NH 03824, USA
5Dept. Atmospheric Sciences, University of Washington, Seattle, WA 98195, USA
6Dept. Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada

Abstract. We use a 3-d global chemical transport model (GEOS-Chem) to interpret aircraft observations of nitrate and sulfate partitioning in transpacific dust plumes during the INTEX-B campaign of April–May 2006. The model includes explicit transport of size-resolved mineral dust and its alkalinity, nitrate, and sulfate content. The observations show that particulate nitrate is primarily associated with dust, sulfate is primarily associated with ammonium, and Asian dust remains alkaline across the Pacific. This can be reproduced in the model by using a reactive uptake coefficient for HNO3 on dust (γ(HNO3)~10−3) much lower than commonly assumed in models and likely reflecting limitation of uptake by dust dissolution. The model overestimates gas-phase HNO3 by a factor of 2–3, typical of previous model studies; we show that this cannot be corrected by uptake on dust. We find that the fraction of aerosol nitrate on dust in the model increases from ~30% in fresh Asian outflow to 80–90% over the Northeast Pacific, reflecting in part the volatilization of ammonium nitrate and the resulting transfer of nitrate to the dust. Consumption of dust alkalinity by uptake of acid gases in the model is slow relative to the lifetime of dust against deposition, so that dust in general does not acidify. This argues against the hypothesis that dust iron released by acidification could become bio-available upon dust deposition. Observations in INTEX-B show no detectable ozone depletion in Asian dust plumes, consistent with the model. Uptake of HNO3 by dust, suppressing its recycling to NOx, reduces Asian pollution influence on US surface ozone in the model by 10–15% or up to 1 ppb.

Citation: Fairlie, T. D., Jacob, D. J., Dibb, J. E., Alexander, B., Avery, M. A., van Donkelaar, A., and Zhang, L.: Impact of mineral dust on nitrate, sulfate, and ozone in transpacific Asian pollution plumes, Atmos. Chem. Phys. Discuss., 9, 24477-24510, doi:10.5194/acpd-9-24477-2009, 2009.
 
Search ACPD
Special Issue
Discussion Paper
    XML
    Citation
    Final Revised Paper
    Share