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Abstract

The components and quantities of atmospheric dust fallout have been reported to be
the pollution indicator of large urban areas. The multiplicity and complexity of sources
of atmospheric dusts in urban regions (e.g. industrial complexes composed of a vari-
ety of industrial processes, automobiles, construction activities etc.) has put forward5

the need of source apportionment of these sources indicating their contribution to spe-
cific environmental receptor. The study presented here is focused on investigation of
source contribution estimates of Mercury in urban dust fallout in an urban-industrial
area, Raipur, India. Source-receptor based representative sampling plan using longi-
tudinal study design has been adopted. Six sampling sites have been identified on the10

basis of land use for development plan of anthropogenic activities and factors related to
the transportation and dispersion pattern of atmospheric dusts. 24 samples of dust fall-
out has been collected from each site (one in each month) and subjected to chemical
analysis of selected chemical constituents known as markers of selected major dust
emitting sources (Steel making average, Road traffic-borne dusts, construction activi-15

ties, Auto mobile exhaust, and soils). Chemical composition of dust measured at sites
marked for identified sources alongwith SPECIATE of USEPA has been used for the
preparation of source profiles. Three classified residential receptors (ambient-outdoor,
house-indoors and local street-outdoors) have been chosen for development of recep-
tor compositional profiles. Source apportionment has been done using Chemical Mass20

Balance (CMB 8). Good fit parameters and relative source contribution has been anal-
ysed and documented. Dust fallout and respective mercury levels were found tobe
higher compared to prescribed standards. Variation in relative contribution of selected
sources from site to site within the study area has been occurred. Dominance of lo-
cal line and area sources (road-traffic and construction borne dusts) on mercury levels25

measured at selected residential receptors compared to stationary industrial sources
has been observed. Road-traffic has shown highest contribution of dust and mercury
in house-indoors, while in case of ambient-outdoor the receptor has shown different
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higher susceptibility of identified sources for dust and mercury. The results of CMB
output and regression data of source-receptor dust matrices have shown comparable
pattern.

1 Introduction

Mercury (Hg) is a persistent, bio-accumulative toxic pollutant. Once Hg is released into5

the environment, it can be converted to the organic form, methyl mercury (MeHg) and
then bio-accumulate in organisms within the food chain, such as fish, posing a con-
sumption risk to wildlife and humans. Mercury is emitted into the atmosphere through
both natural and anthropogenic processes with 50–75% of global emissions attributed
to anthropogenic sources (Nriagu et al., 1990, EPMAP 1994). The major sources of10

mercury to the atmosphere include fossil fuel combustion, waste incineration, iron-
steel production, coke and lime production, hazardous waste recycling, non-ferrous
metal smelting, petroleum refining, and mercury cell chlor-alkali plants (Keelar et al.,
1995; Landis et al., 2004). Gerald and Keeler (2006) has reported that the annual wet
deposition of mercury for 2003 and 2004 were 14.0 and 13.5 ng L−1 and total annual15

mercury wet deposition was 13.5 and 19.7µg L−1. Sharma and Parvez (2005) has
observed selected toxic elements (As, Pb, Mn, Hg and Cd) were determined in human
breast milk and blood samples obtained from 120 subjects related to an integrated
steel plant environment located in central India. The mechanisms of Hg transport dur-
ing hydrological events are poorly understood and yet may influence Hg bioavailability20

and exposure to aquatic biota (Joseph et al., 2008).
Increasing severity of dispersion and fallout of fugitive dusts in urban areas of In-

dia has shown spontaneous linkage with higher degree of health disorders especially
bronchial ailments (Saxena et al., 2008; Quraishi and Pandey, 1995; Sharma and Per-
vez, 2005; Sharma and Pervez, 2003; Bohm and Saldiva, 2000; Goel and Trivedi,25

1998). Due to higher settling tendency of bigger particles of dust fallout fraction near
emission sources on a regional scale, researchers have made classification of its re-

21917

ception pattern as ambient-outdoor, street-outdoor and indoors dust fallout (Dubey and
Pervez, 2008; USEPA, 2003; Quraishi and Pandey, 1993; Sharma and Pervez, 2004;
Gadkari and Pervez, 2007). Due to presence of a variety of point, line and area sources
of dusts emission, an non-uniform distribution of dusts in various environmental media
has been reported earlier (Sharma and Pervez, 2004). (Sartor and Boyd, 1972; Pitt5

and Amy, 1973; Pitt, 1979; Mustard et al., 1985; Schroder and Hedley, 1986; Schroder
et. al., 1987; ISWS, 2003).

Adachi and Tainosho (2004) have characterize the street dusts to investigate Zn as
tire dust indicator in Japan using reference work done in the field of chemical apportion-
ment of road-traffic settleable dusts earlier (Smolders and Degryse, 2002; Davis et al.,10

2001, Rogge et al., 1993). Atmospheric deposition of vanadium, lead, chromium, cop-
per, zinc and nickel has been described earlier (Dundar, 2006; Dundar and Pala, 2003;
Dundar and Altundag, 2002; Dundar and Deryaoglu, 2005; Barceloux, 1999; Turkoglu
et al., 2003; Tuzen, 2003; Arslan, 2001). Large size particles of dusts fallout in urban
regions has been reported to be the major cause of prevalence of asthma (occur at15

upper nasal area) compared to association of fine particulates with inner respiratory
disorders (Sax and Richard, 1984; Roosli, 2000; Wieringa et al., 1997; USEPA, 2003).

The presented work has been focused on source apportionment of dust fallout in
selected classified urban receptor of Raipur City, India which located in global scale
of: 21◦ 14′ 22.7′′ N latitude and 81◦ 38′ 30.1′′ E longitudes. Regression analysis be-20

tween various longitudinal measurements of selected and defined deposit regions has
been utilized to identify possible sources/routes of dust transport to a receptor region.
Chemical mass balance (CMB8, USEPA) has been executed to investigate source con-
tribution estimates of dust fallout in relation to source signature of mercury in a specific
ambient-outdoor receptor located in a residential area.25
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2 Materials and method (study design, sampling plan and data analysis)

2.1 Study design

The study was undertaken in an urban area. The goal of the study is to evaluate relative
source contribution estimates of various routes of mercury in dust fallout in urban res-
idential environment. The objectives here are: (1) To measure and characterize dust5

fallout and mercury at identified sources (2) to analyze statistically, the relationship be-
tween dust fallout measurements of source-routes and residential-receptors and (3) to
carryout apportionment of Mercury in dust fall at classified residential-receptors, tak-
ing identified atmospheric routes as possible sources using Chemical mass balance
Model (CMB8). A residential area (Birgaon) located in close proximity to a major in-10

dustrial area (Siltara) has been selected for the study. Apart from two major industrial
sources of dusts emission, local soils, paved road dusts and automobile exhaust emis-
sions alongwith construction activities have also been identified to cluster of source
profiles for source apportionment. The details of location of residential colony (recep-
tor), major industrial complexes, wind rose and wind channels have been shown in15

Figs. 1–2.

2.1.1 Sampling design

A comprehensive study about source contribution estimates of major possible and ob-
servable sources of dusts emission to dust fallout of urban areas (residential, commer-
cial and sensitive regions) was started from yr 2007. Source apportionment study of20

Mercury in dust fallout of a specific urban-residential region has been presented here.
A non-probability based longitudinal stratified random sampling design in space-time
frame work has been chosen to achieve the objectives (Gilbert, 1987; USEPA, 2003).
Ambient-outdoor atmospheric level has been decided for measurement of dust fall-
out at identified sources of dust emissions. In case of residential-receptor, three most25

susceptible atmospheric levels have been chosen, namely ambient-outdoors, house-
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indoors and local street-outdoors (Table 1).

2.1.2 Sampling method of Dust fallout

Dust emission sources were identified using layout map, anthropogenic activity pat-
terns and urban-industrial development plan of the study area. The identified sources
(Table 1) were classified in point, line and regional sources of dust emission (Goel and5

Trivedi, 1998). Dust collection Jars (Dimension: dia-23′′ ht-45′′) with standard specifi-
cations (Katz, 1977; Thakur and Deb, 1999) has been placed for a month at a height of
10 ft (ambient-outdoor), at both source (S-1, S-2) and receptor sites, 5 ft (local street-
outdoor) and 1 ft (indoor-house) at receptor sites. Sampling at local-outdoor (5 ft height)
has been chosen for measurement at construction activity site. In case of sampling at10

paved road source (S-3), sampler was installed at the height of 5 ft at major cross road
passing near to the residential colony. About a liter of double distilled water was placed
in each Jar and a net sheet (size: 20 mesh) was placed on mouth of the Jars. Wa-
ter soluble and insoluble fraction of dust fallout has been measured separately and by
adding them, total dust fallout was measured. Five replicate measurements were done15

to minimize weighing error (Table 2).
As far as soil chemical profile (S-6) is concern, samples of soils (1 kg) have been col-

lected from open land of residential colony. Soil samples were collected after removing
surface soils upto 6 cm depth (Gadkari and Pervez, 2008). Black smoky dust emitted
and deposited in automobile exhaust silencers of diesel fuel based heavy duty trucks20

and petrol based cars have been collected and scum were mixed together for devel-
opment of chemical profile of automobile source (S-4). Vehicles have been selected
randomly which mostly passes through that road junction. About 5–10 g of exhaust
emitted black smoky dust has been collected. Frequency of sampling was 24 (one in
each month) at each source-receptor site throughout the sampling period (February25

2007 to January 2009).
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2.2 Chemical analysis of dust fallout

Dried samples of soils and automobile exhaust scum have been powdered using a
milling machine. Powder and dust samples were digested in Teflon digestion bomb
and nitric acid (HNO3) and hydrogen peroxide (H2O2) (3:1). Teflon bomb was then
kept in an electric oven at 110◦C for 8 h, cooled, and contents filtered in a volumetric5

flask and washed with dilute HNO3. Final volume of digested sample was made up to
25 ml using distilled water. Digested samples and soluble fraction of dust fallout mea-
sured during field sampling were analyzed for total Hg content using inductive coupled
plasma-atomic emission spectrophotometer (ICP-AES) (JOBIN-YVON HORIBA ICP
Spectrometer Version 3.0). An Argon gas (ionization energy, of 15.6 eV) was used as10

plasma. Hg analysis was carried out at a wavelength of 194.22 nm to avoid spectral and
chemical interferences. Calibration of instrument was done using HgCl2 (AR, Merck) of
concentration range 0.001–0.1 ppm (Montaser and Golightiy, 1987). Apart from mer-
cury, 24 other chemical species known for indicator species of identified sources have
also been analyzed in all source-receptor dust matrices using ICP-AES by recom-15

mended procedure of analysis and data were utilized as necessary input for chemical
mass balance modeling.

2.3 Data analysis

Measurement data of dust fallout and particulate mercury has been documented as
geometrical mean and standard deviation of longitudinal measurements of each moni-20

toring site and presented in Table 2. Regression analysis between annual mean of dust
fallout measured at defined receptor site (local-outdoor, indoor and street of Birgaon
residential region) and selected source sites (Siltara Industrial complex, Urla Industrial
complex, paved road and construction sites) has been conducted and presented in
Fig. 3.25

The source profile abundances (mass fraction of chemicals in the emissions from
each source type) and the receptor concentrations, with appropriate uncertainty es-
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timates, serve as input data to the CMB model. The output consists of the amount
contributed by each source type represented by a profile to the total mass and each
chemical species. The CMB calculates values for the contributions from each source
and the uncertainties of those values. The CMB is applicable to multi-species data
sets. The CMB modeling procedure requires: (1) Identification of the contributing5

source type; (2) selection of chemical species or other properties to be included in
the calculation; (3) estimation of the fraction of each of the chemical species which
is contained in each source type (source profile); (4) estimation of the uncertainty in
both receptor concentrations and source profiles; and (5) solution of the chemical mass
balance equations. The CMB is implicit in all factor analysis and multiple linear regres-10

sion models that intend to quantitatively estimate source contributions. The chemical
mass balance consists of a least squares solution to a set of linear equations which
expresses each receptor concentration of a chemical species as a linear sum of prod-
ucts of source profile species and source contribution. Exact knowledge of dispersion
factor of emissions is not necessary in receptor models.15

Geometric mean and standard deviation values of chemical parameters have been
utilized for the concentration and uncertainties of corresponding species of specific site
for development of source/receptor profiles. All prepared source and receptor profiles
has been introduced in CMB model using an INFRA control file to execute source
apportionment program (Watson et al 1997 and 1998). Results of CMB execution have20

been presented in Figs. 4, 5 and 6.

3 Results and discussion

3.1 Annual flux and rate of dust fallout

The total annual flux of airborne dust particulate has been calculated on the ba-
sis of month wise measurements of dust fall rate at different sources and recep-25

tor during February 2007–January 2009. All the sites have shown thousand times
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higher annual dust fall rate compared to prescribed standard of 0.01 mt km−2 month−1

(Ferrari, 2000). The monthly dust fall rate were found to be in the range
67.71–391.01 mt km−2 month−1 for all six source sites and the receptor site has
shown the range 51.78–119.64 mt km−2 month−1 at ambient-outdoor level, 61.56–
143.56 mt km−2 month−1 at outdoor-street and 12.34–18.92 mt km−2 month−1 in house-5

indoors of residential area during the sampling period of 24 month. The lowest rate
of dust fall in source sites was found at construction (S-4) in summer and the high-
est at Siltara industrial area (S-1) in spring and at receptor area (Birgaon) (R-1), the
lowest rate found in post-rainy and the highest in winter at ambient-outdoor level.
In street-outdoor level, lowest rate was found in post-rainy and the highest in winter10

season. Indoor-house has shown lowest dust fall in summer and the highest win-
ter season. The geometric mean of dust fallout rate (mt km−2 month−1) of 24 sampling
months at different sampling sites were found tobe: 181.19±77.97 (S-1), 217.43±24.41
(S-2), 141.44±18.31 (S-3), 87.85±25.49 (S-4) and for receptor site (R-1), ambient-
outdoor level have shown 77.59±25.49, street-outdoor 84.29±22.35 and house-indoor15

14.31±2.39. On the basis of monthwise dust fall rate, the highest total flux was ob-
served to be measured at S-2 with an amount of 2624.78 mt km−2 yr−1. The values
of annual flux in the other sources, viz.S-1, S-3 and S-4 were 2313.91, 1709.1 and
1070.29 mt km−2 yr−1, respectively. Linear regression analyses have shown that re-
ceptor site (Birgaon) is best correlated with Road dust fall (S-4) compared to other20

sources at ambient, street and indoor level (Fig. 2).

3.2 Mercury levels in airborne dust fallout

The analyses on month wise and site wise, mercury concentration in mt km−2 m−1

has been calculated in mt km−2 m−1 and annual site wise flux of Hg in mt km−2 yr−1

at different sites for the whole study period have also been evaluated and pre-25

sented in Table 2. Month wise variation of flux of mercury in the airborne dust fall
(mt km−2 m−1) for 24 sampling months at different sampling sites were observed to
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be in the range: 0.0017±0.0012 in S-1, 0.0041±0.0037 in S-2, 0.004±0.0038 in S-3,
0.003±0.002 in S-4, 0.0012±0.0005 in S-5 and 0.0014±0.0011 in S-6. For recep-
tor site, the mercury concentrations have been found as: 0.0641±0.033 at ambient-
outdoor level, 0.0309±0.0324 at street-outdoor, and 0.0342±0.0284 at house-indoor
levels. The concentration of mercury at S-1 (Siltara industrial area) ranges between5

0.0009–0.01 mt km−2 m−1 and at S-2 (Urla industrial area) it ranges between 0.001-
0.0104 mt km−2 m−1 dust falls. These are higher than the Hg concentrations found in
other sources viz. S-3, S-4, S-5 and S-6. The Hg concentrations for other sources
were in the range 0.0009–0.004 mt km−2 m−1 at S-3, 0.0009–0.002 mt km−2 m−1 at S-
4, 0.001–0.004 mt km−2 m−1 at S-5 and 0.001–0.006 mt km−2 m−1 at S-6 of dust ma-10

trix. Simultaneously, residential receptor have shown reception of 0.0414–0.0957 at
ambient level, 0.01–0.102 at street and 0.019–0.082 mt km−2 m−1 Hg at house indoor
level in dust fall. Due to the maximum precipitation of airborne particulates, as well
as highest concentration of Hg in industrial areas, the flux of Hg is also maximum in
ambient-outdoor level. The next highest flux of dust fall-Hg has been found at heavy15

traffic-outdoors. House- indoors of R-1 has shown the least quantum of Hg.

3.3 Source apportionment studies

3.3.1 Preliminary assessment using regression analysis

Dust fallout measurements of selected sources [Industrial complex, SIltara (S-1), In-
dustrial complex, Urla (S-2), paved road (S-3) and Construction activities (S-5)] have20

been linearly regressed with measurements at classified atmospheric levels of defined
receptor (R-1) to assess possible contribution effect on receptor site (Fig. 3). The in-
tercept and slope values have been utilized to assess contribution effect of identified
sources on receptor site (Geller et al., 2002; USEPA, 2003). It has been observed that
industrial source S-1 and construction activities (S-5) have shown significant contribu-25

tion. S-1 has shown about 39.29% contribution in dust fall while construction activities
have shown 90% contribution effect in higher dust fall at ambient-outdoor level of R-1.
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Other two sources (S-2 and S-3) have not shown any contribution in dust fall of ambient
level. In case of street-outdoor level, industrial location of Siltara (S-1) have shown 17%
contribution effect, while other sources have not shown significant contribution. Paved
road have shown major contribution in dust fall of local Street-outdoor of R-1. As far
as house-indoor levels is concern, paved road (S-3) and construction activities (S-5)5

have shown significant contribution effect of 90% and 62%, respectively. Overall vari-
ation in source contribution effect on dust fallout measurements across the classified
atmospheric levels at defined residential receptor has been observed.

3.3.2 Source signatures of dust fallout and mercury content using receptor
model10

Chemical compositional profile of identified six sources including soils of the study
region has been developed using annual mean and standard deviation of measured 25
chemical constituents. The logarithmic chemical profiles of selected sources (S-1 to
S-6) using statistical boxplots have been presented in Fig. 4. The source composition
profiles of four sources and three atmospheric levels of defined receptor have been15

utilized for source apportionment of dust fallout and its mercury content at Birgaon
residential outdoor (R-1). Besides, chemical profiles of vehicle exhaust (S-4) and local
soils (S-6) have also been prepared and used for source apportionment modeling.
Output of CMB8 with good fit parameters has been presented in Table 3. Multiple
source contribution has been observed with dominance of paved road in dust fall at20

all classified atmospheric levels of defined receptor. Re-suspension of poor quality
paved road-dust has suppressed the soil dust contribution upto a large extent. Lower
contribution of Urla Industrial source compared to Siltara Industrial source has been
observed and variation in contribution could be assessed using wind channels of the
study region. In contrast to international scenario, vehicle exhaust has shown lower25

contribution due to predominance of paved road dust source. In case of dust fall of
ambient level, S-1 and S-5 have shown similar pattern of contribution, while in case of
house-indoors, construction activities have not shown significant contribution.
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The results of source apportionment of mercury content of dust fallout have shown
that construction activities was came out as major contributor with 30% with soils of
32%. It has been reported earlier that cemetitious material has contain 0.02 g of mer-
cury (ACC, 2007) and Airey (1997) has reported that mercury content has been found
in the range of 0.03–0.46 ppm in ingredients of cement material. Vehicle exhaust and5

industrial location of SIltara have also shown significant contribution in mercury con-
tent of dust fall in all atmospheric levels of residential receptor (R-1). Overall, contrast
result of source apportionment of dust fallout and mercury content of dust fall has been
observed.

4 Conclusion10

Profuse and highly skewed dust fallout at outdoor, street and indoor level of receptor
(Birgaon) residential area has been observed. It has been observed that geometrical
mean level of dust fallout at residential outdoor receptor is thousand times higher than
maximum permissible limits (0.01 mt km−2 m−1) developed in Australia (Ferrari, 2000)
and also shown significant increase with a decade (Thakur and Deb, 1999). Dust fall-15

out levels in Urla industrial area (S-2) has shown higher deviation pattern in annual
geometrical mean compared to that in Siltara Industrial area (S-1) and attributed to
the huge dust formation and emission from industrial processes. Paved road has also
shown comparable levels with that measured in industrial sites due to higher degree of
re-suspension of dusts formed during eruption of low quality paved road material. An-20

nual mean of dust fallout measured at civil construction site has also shown thousand
times higher levels compared to maximum permissible limits. The mercury concentra-
tion in dust fallout was found to be in the range 0.0009–0.01 mt km−2 m−1 of airborne
dust fallout for all 6 source sites during the course of study. Thus, the annual flux of Hg
in the urban city is an alarming amount of 2.996 mt.25

As far as source contribution assessment is concern, paved road (S-3) has shown
major contribution in dust fall at all stages i.e. 37% at ambient, 60% street and 34%
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indoor level of R-1 (Birgaon residential area). Siltara industrial area (S-1) has shown
significant contribution at all stages than Urla industrial area (S-2). Mercury source
apportionment values have shown different source contribution at different level. Soil
(S-6) have shown major contribution (32%) at ambient level, Siltara industrial area
(S-1) have expressed major contribution (47%) in street dust fallout and paved road5

(S-3) have given major contribution (44%) in indoor dust fallout. Siltara industrial area
has shown significant contribution at all levels compared to Urla industrial area and all
other sources. Anthropogenic activities, wind velocity and wind directions have played
the major role in higher contribution factor of source emitted dust fallout and mercury
in selected residential receptor.10
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Fig 1: Local map of source and receptor sites in Raipur City along with 
annual windrose of the region 

              

 

 

 
 
 
 

              
 
 

Fig. 1. Local map of source and receptor sites in Raipur City along with annual windrose of the
region.
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Fig. 2: Wind channels over the Raipur Region, India during sampling year 
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Fig. 3: Regression analysis between selected dust fallout receptors 

and dust fallout at identified selected source sites in urban-
industrial environment of India 

 

 
 

 
 

 
 

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Regression analysis between selected dust fallout receptors and dust fallout at identified
selected source sites in urban-industrial environment of India.
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Fig. 4:  Profiles of identified sources developed by Chemical Mass Balance Model (CMB 8) 
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Fig. 05: Relative source contribution estimates of dust fallout at 

selected classified atmospheric levels in residential 
zone of urban-industrial environment 
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Fig. 5. Relative source contribution estimates of dust fallout at selected classified atmospheric
levels in residential zone of urban-industrial environment.
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Fig. 6. Relative source contribution estimates of particulate mercury at selected classified
atmospheric levels in residential zone of urban-industrial environment.
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Table 1. Identification and grouping of defined sources and receptor in the study area.

S.No. Name of
Source/receptor

Type Classification of moni-
toring level

Site characteristics Sampling
Frequency

Source sites

S-1 Siltara industrial area Stationary
point

Ambient-outdoor Most of the industries
are: casting, sponge
iron, steel foundries.

24 samples
throughout the
sampling of two
year (One in each
month)

S-2 Urla Industrial, area Stationary
point

Ambient-outdoor Most of the industries
are: casting, chemical,
oil production, glass
and plastics.

S-3 Paved road Line outdoor Re-suspended dusts of
road side runoff mea-
sured at 3 ft height

S-4 Automobile Point Emission outlet Mixed dust fraction
emitted from silencer
of truck, cars and two
wheelers

S-5 Civil construction Area Ambient-outdoor Dusts emitted from
handling of raw ma-
terials used in civil
construction site

S-6 Local soils Area source – Re-suspension of soil
dusts

Receptor sites

R-1
R-2
R-3

Birgaon, Raipur Residential
area

Ambient-outdoor
House-Indoors
Local Street-Outdoors

Residential area lo-
cated northeasterly
and downwind to
industrial complexes

24 samples
throughout the
sampling of two
year (One in each
month)
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Table 2. Yearly average dust fallout (mt km−2 m−1) monitored in classified receptor and source
sites.

Receptor sites

Ambient-outdoor House indoors Street outdoors

77.59±25.48
(51.784–119.64)
(0.064±0.033)*
(0.033–0.118)

14.31±2.38
(12.342–18.923)
(0.0342±0.0284)*
(0.018–0.089)

84.29±22.35
(61.56–143.56)
(0.0309±0.0324)*
(0.011–0.102)
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Table 2. Continued.

Source sites

S-1 S-2 S-3 S-4 S-5 S-6
181.18±77.97
(131.51–391.00)
(0.0017±0.0012)*
(0.001–0.004)

217.42±24.41
(178.54–245.29)
(0.00399±0.0038)*
(0.001–0.01)

141.43±18.32
(122.73–186.25)
(0.0012±0.0005)*
(0.0009–0.002)

ND
(0.027±0.002)*
(0.001–0.06)

87.84±16.36
(67.71–116.54)
(0.0039±0.0038)*
(0.001–0.01)

ND
(0.0014±0.001)*
(0.0009-0.004)

∗ Values of annual average mercury concentration and its standard deviation.
Values in parenthesis are minimum and maximum levels throughout sampling period.
Abbreviation: Mt – metric tone, m – month, ND – Not measured.

21939

Table 3. Good fit parameters of CMB execution output results for selected receptors.

Receptors R2 CHI
SQUARE

TSTAT

S-1 S-2 S-3 S-4 S-5 S-6
Ambient-outdoor (R-1) 0.79 0.34 1.69 – 0.84 0.62 1.65 –
Local Street-outdoor (R-3) 0.51 3.75 4.89 – – 0.15 – 2.39
House-Indoors (R-2) 0.73 1.63 2.23 – 3.53 – 2.03 –
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