Atmos. Chem. Phys. Discuss., 9, 20063-20101, 2009
www.atmos-chem-phys-discuss.net/9/20063/2009/
doi:10.5194/acpd-9-20063-2009
© Author(s) 2009. This work is distributed
under the Creative Commons Attribution 3.0 License.
Review Status
This discussion paper has been under review for the journal Atmospheric Chemistry and Physics (ACP). Please refer to the corresponding final paper in ACP.
Measured and predicted aerosol light scattering enhancement factors at the high alpine site Jungfraujoch
R. Fierz-Schmidhauser, P. Zieger, M. Gysel, L. Kammermann, P. F. DeCarlo, U. Baltensperger, and E. Weingartner
Laboratory of Atmospheric Chemistry, Paul Scherrer Institut, Villigen, Switzerland

Abstract. Ambient relative humidity (RH) determines the water content of atmospheric aerosol particles and thus has an important influence on the amount of visible light scattered by particles. The RH dependence of the particle light scattering coefficient (σsp) is therefore an important variable for climate forcing calculations. We used a humidification system for a nephelometer which allows for the measurement of σsp at a defined RH in the range of 20–95%. In this paper we present measurements of light scattering enhancement factors f(RH)=σsp(RH)/σsp(dry) from a 1-month campaign (May 2008) at the high alpine site Jungfraujoch (3580 m a.s.l.), Switzerland. At this site, f(RH=85%) varied between 1.2 and 3.3. Measured f(RH) agreed well with f(RH) calculated with Mie theory using measurements of the size distribution, chemical composition and hygroscopic diameter growth factors as input. Good f(RH) predictions at RH<85% were also obtained with a simplified model, which uses the Ångström exponent of σsp(dry) as input. RH influences further intensive optical aerosol properties. The backscatter fraction decreased by about 30% from 0.128 to 0.089, and the single scattering albedo increased on average by 0.05 at 85% RH compared to dry conditions. These changes in σsp, backscatter fraction and single scattering albedo have a distinct impact on the radiative forcing of the Jungfraujoch aerosol.

Citation: Fierz-Schmidhauser, R., Zieger, P., Gysel, M., Kammermann, L., DeCarlo, P. F., Baltensperger, U., and Weingartner, E.: Measured and predicted aerosol light scattering enhancement factors at the high alpine site Jungfraujoch, Atmos. Chem. Phys. Discuss., 9, 20063-20101, doi:10.5194/acpd-9-20063-2009, 2009.
 
Search ACPD
Discussion Paper
    XML
    Citation
    Final Revised Paper
    Share