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2GAME/CNRM (Météo-France, CNRS), Toulouse, France

Received: 16 July 2009 – Accepted: 6 August 2009 – Published: 25 August 2009

Correspondence to: O. Geoffroy (geoffroy@knmi.nl)

Published by Copernicus Publications on behalf of the European Geosciences Union.

17633

Abstract

Parametric functions are currently used to represent droplet spectra in clouds and to
develop bulk parameterizations of the microphysical processes and of their interactions
with radiation. The most frequently used parametric functions are the Lognormal and
the Generalized Gamma which have three and four independent parameters, respec-5

tively. In a bulk parameterization, two parameters are constrained by the total droplet
number concentration and the liquid water content. In the Generalized Gamma func-
tion, one parameter is specified a priori, and the fourth one, like the third parameter of
the Lognormal function, shall be tuned, for the parametric function to statistically best
fit observed droplet spectra.10

These parametric functions are evaluated here using droplet spectra collected in
non-or slightly precipitating stratocumulus and shallow cumulus. Optimum values of the
tuning parameters are derived by minimizing either the absolute or the relative error for
successively the first, second, fifth, and sixth moments of the droplet size distribution.
A trade-off value is also proposed that minimizes both absolute and relative errors15

for the four moments concomitantly. Finally, a parameterization is proposed in which
the tuning parameter depends on the liquid water content. This approach significantly
improves the fit for the smallest and largest values of the moments.

1 Introduction

Cloud particles are represented by their size distribution also referred to as spectrum.20

In the liquid phase, the spectrum originates from activation of cloud condensation nu-
clei (CCN), mainly at cloud base. Hence it expends from submicron particles for the
smallest activated CCNs to about 10µm in radius for the giant ones. As particles grow
by condensation, the spectrum gets narrower because the growth rate of a droplet
is inversely proportional to its size. Higher in a cloud, spectral narrowing is coun-25

terbalanced by broadening processes, mainly by turbulent mixing, because particles
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experience different growth histories along different trajectories, some ascending adi-
abatically from cloud base, while others undergo dilution with environmental air and
partial evaporation. New CCNs can also be activated higher than cloud base, when
moist and clear air is entrained in an updraft, hence initiating small droplets. When
the biggest droplets reach a radius of about 20µm, collision and coalescence gener-5

ate drizzle particles (from 20 to a few 100µm). If the cloud is sufficiently deep and
the liquid water content large enough, droplets and drops continue to collide to form
precipitation drops (mm). The maximum drop radius, of the order of 4 mm, is limited by
break-up, either following a collision or spontaneously for the biggest drops. The total
number concentration spans over a large range, because millions of droplets are nec-10

essary to form a drop. It thus evolves from up to 1000 cm−3 for droplets in a polluted
environment, to a few per cubic meter for precipitation drops. Because the number
concentration of activated CCN, the convective cell trajectories, the series of mixing
events and the resulting growth histories by condensation, collection and break-up are
infinitely diverse, cloud particle spectra exhibit all kinds of shapes (Warner, 1969a, b,15

1970, 1973a, b).
The cloud droplet size distribution (CDSD) is expressed as a concentration density,

n(r)dr, i.e. number density of droplets per volume (or per mass) of air, and per unit size.
To summarize the properties of a size distribution, one commonly uses a moment of
the distribution Mp, or the mean radius of the pth moment rp:20

Mp =

∞∫
0

rpn(r)dr, (1)

rp =
(
Mp
/
N
) 1

p
(2)

where N=M0 is the total number concentration.
To interpret microphysical observations, examine the interactions between cloud mi-

crophysics and other physical processes, and numerically simulate these interactions,25
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parametric functions are frequently used to reduce the variety of the droplet spectral
shapes. The objective in this paper is to evaluate parametric functions that best repli-
cate observed spectra on a statistical basis. The focus is on non-or slightly precipitating
stratocumulus and shallow cumulus clouds.

After a brief description (Sect. 2) of bulk microphysics schemes, three frequently5

used parametric functions are described in Sect. 3. The methodology for tuning the
functions and the data sets on which tuning relies are detailed in Sects. 4 and 5,
respectively. Section 6 addresses the specific issue of scaling up small scale mea-
surements for characterizing cloud system properties. The results are then reported
in Sect. 7, for fixed and variables values of the tuning parameters successively, before10

the conclusions.

2 Bulk parameterizations and parametric functions

In a numerical model, the natural variability of the droplet spectra can be explicitly sim-
ulated with “bin” microphysical schemes where the number distribution is discretized,
from 30 to 200 size classes (Kogan, 1991). The computational cost of such schemes15

however, prevents their use in large domain, high spatial resolution, cloud resolving
models. Instead, bulk parameterizations have been developed. Indeed, even though
spectra are diverse, one usually observe a transition from droplets to drops, in the
size range where condensational growth becomes inefficient, while collection starts to
become significant, namely between 20 and 50µm in radius. This size range also cor-20

responds to a rapid increase of the particle fall velocity with the particle radius (∝r2).
In a liquid phase bulk scheme, hydrometeors are thus distributed in two categories, the
droplets that do not or slowly sediment, and the drops that precipitate more rapidly. This
necessarily introduces errors and biases. The art in the development of bulk parame-
terizations is therefore to carefully select the minimum number of well suited prognostic25

variables and develop equations that reflect the physical processes responsible for the
evolution of these variables, while minimizing errors and biases.
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Bulk parameterizations can be classified according to the number of particle cate-
gories, the threshold radius value that separates the categories, and the number of
independent variables used to describe each category. For the liquid phase, they are
currently limited to two hydrometeor categories, droplets and drops, but the threshold
radius depends on the application. For simulation of deep clouds, the threshold radius5

is generally set to about 40–50µm (Berry and Reinhardt, 1974; Seifert and Beheng,
2001), while for shallow clouds a lower threshold of 20–25µm is preferred (Khairoutdi-
nov and Kogan, 2000). Note that all independent variables of a parameterization are
not necessarily prognostic variables in a numerical model. For instance in Seifert and
Beheng (2006), using a Gamma distribution to represent the droplet mass spectrum,10

the parameter νc is set to 1; in Ackerman et al. (2008) using a Lognormal distribution,
the parameter σg is set to 1.5, although a value of 1.2 is recognized to better fit the
observations. Original bulk schemes were limited to one prognostic variable per cate-
gory: the water content, qc for the droplets and qr for the drops (or mixing ratio=q/ρa,
whereρa is the air density) (Kessler, 1969; Tripoli and Cotton, 1980). More recent15

schemes rely on 4 prognostic variables, adding to the water contents the total number
concentration in each category, Nc and Nr (Ziegler, 1985; Cohard and Pinty, 2000;
Khairoutdinov and Kogan, 2000; Seifert and Beheng, 2001). Beyond the total water
content and total number concentration of particles in each category, there were a few
attempts to introduce more variety by also predicting additional variables such as the20

reflectivity, as in Milbrandt and Yau (2005). Table 1 summarizes the characteristics of
existing bulk parameterizations for the liquid phase, with a focus on the description of
the droplet category.

The physical processes that act as sources and sinks for the particle categories shall
then be parameterized. The CCN activation process is a source for the droplet cate-25

gory. The collection process (a sink for the droplets and a source for the drops) is
parameterized by accounting for the collection between droplets to form drops (auto-
conversion), and the collection of droplets by drops to form bigger drops (accretion).
In the most sophisticated schemes, the collection between droplets to form bigger
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droplets and the collection between drops to form bigger drops (self-collection) are
also considered (Ziegler, 1985; Cohard et Pinty, 2000; Seifert and Beheng, 2006). In-
deed, these two last processes do not affect the mass of condensed water in each
category, but the number concentration, hence the mean size of the particles and their
mean fall velocity.5

It is also useful to notice that two methodologies were adopted to develop bulk pa-
rameterizations. In the empirical approach (Khairoutdinov and Kogan, 2000), numer-
ical simulations of clouds are performed with a bin microphysics scheme. Each grid
box, at each time step, is then used as one realisation of the microphysical processes,
from which bulk variables (qc, qr , Nc, Nr ) and their evolution rates by CCN activation,10

auto-conversion, accretion, and precipitation can be calculated. Empirical laws are
then derived by minimization over the whole set of realisations. In such a case, the
accuracy of the parameterization is limited by the performance of the bin microphysics
scheme and the variable space explored by the simulations. Others (Liu and Daum,
2004) follow a more analytical approach in which the particle size distribution in each15

category is represented by a parametric function. The stochastic collection equation is
then analytically resolved to derive a formulation of the auto-conversion and accretion
rates. In this case the accuracy of the solution mainly depends on the realism of the
chosen parametric function. Note however, that coefficients of some “analytical type”
bulk parameterizations are tuned empirically (Seifert and Beheng, 2001, 2006).20

Some physical processes in a cloud model require additional information about cloud
microphysics, beyond the prognostic number concentration (N=M0) and water content
(∝M3). For instance, CCN activation is often parameterized using a diagnostic of the
peak supersaturation, that depends on the first moment of the size distribution M1,
also referred to as the droplet integral radius (Twomey, 1959). Radiative transfer calcu-25

lations in clouds depend on light extinction that is proportional to the second moment
M2 of the droplet spectrum (Hansen and Travis, 1974). The sedimentation flux de-
pends on the droplet sizes, through an approximation of their fall velocity. For particles
smaller than 30µm in radius, the terminal fall velocity verifying roughly the Stokes’ law
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(Roger and Yau, 1989), the sedimentation flux of particle number is proportional to the
second moment, M2, and the sedimentation flux of water content is proportional to the
fifth moment, M5. The radar reflectivity in a liquid phase cloud is proportional to M6

(Atlas, 1954). The width of the size distribution w=1/M0

√
M0M2−M2

1 , or its dispersion

d=N ·w/M1, have been used to establish relationships between the mean volume and5

effective radii of the droplet spectrum for radiative transfer calculations (Liu and Daum,
2000). It is therefore not sufficient for a microphysics bulk parameterization to accu-
rately predict the auto-conversion and accretion rates; it must also provide accurate
diagnostics of various integral properties of the cloud droplet spectrum, at least for M1,
M2, M5, M6.10

In summary, bulk parameterizations that are developed following an analytical ap-
proach rely on a priori specified parametric functions for the description of the droplet
spectra. Moreover, all bulk parameterizations, including those empirically tuned, also
require a priori specified parametric functions to establish formal relationships between
the prognostic moments of the droplet size distribution (M0 and M3) and those used in15

the parameterization of each microphysical process.

3 Commonly used parametric functions

To represent droplet size distributions, the most frequently used parametric functions
are the Lognormal (Clark, 1976; Feingold et Levin, 1986) and the Generalized Gamma
(Liu and Hallett, 1998; Cohard et Pinty, 2000). These two functions are convenient20

because any of their moments can be expressed as a function of the parameters of the
distribution. The Lognormal function

nc(r) = N
1

√
2πr lnσg

exp

−1
2

(
ln(r/rg)

lnσg

)2
 (3)
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has 3 independent parameters, the total number concentration N, the geometric stan-
dard deviation σg, and the mean geometric radius rg, where rg=e

<ln(r)>. The pth mo-
ment of the spectrum is directly related to N, σg, and rg via:

Mp = Nrpg exp

(
p2

2
(lnσg)2

)
, (4)

and it is expressed as a function of N, M3 and σg as5

Mp = N1−p/3Mp/3
3 exp

(
p2 − 9

2
ln(σg)2

)
. (5)

The Generalised Gamma function

n(r) = N
α

Γ(ν)
λανrαν−1 exp(−(λr)α) (6)

has 4 independent parameters, N, the slope parameter λ and the two shape param-
eters α and ν. The pth moment of the spectrum is directly related to N, λ, α and ν10

via:

Mp =
N
λp

(
Γ(ν + p

α )

Γ(ν)

)
(7)

and it is expressed as a function of N, M3, α and ν as:

Mp = N1−p/3Mp/3
3

Γ(ν + p
α )

Γ(ν + 3
α )

p
3

Γ(ν)
p−3

3 . (8)

The Generalized Gamma function includes the Gamma (or Golovin), the Exponential15

and the Weibull functions. Indeed, the Gamma function (Liu and Daum, 2004) is a
Generalized Gamma with α=1 (hereafter referred to as GG1). Some authors use the
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Gamma function to represent the cloud droplet mass distribution (Berry and Reinhardt,
1974; Williams and Wojtowicz, 1982; Seifert and Beheng, 2001), which is equivalent
of using a Generalized Gamma function with α=3 (hereafter referred to as GG3) for
describing the particle number concentration distribution. In this paper, both values,
α=1 and α=3, are evaluated.5

In summary, in the framework of a bulk parameterization with two prognostic vari-
ables for the droplet category (M0 and M3), there is still one parameter to adjust,
hereafter referred to as the tuning parameter, either σg for the Lognormal or ν for the
Generalised Gamma function, where α has been specified to either 1 or 3.

4 Methodology10

The objective in this paper is to determine which value of the tuning parameter al-
low the parametric function to statistically best fit the observed droplet spectra. More
specifically we will address the following questions.

– When a Lognormal, a GG1 or a GG3 function is used, and the tuning parameter
is constant, what is the best value to use for this parameter?15

– Is the accuracy improved if the tuning parameter is allowed to vary?

– In such a case how can it be diagnosed from the two prognostic variables N and
qc?

To answer these questions, a large sample of droplet spectra measured in diverse
types of non- or slightly precipitating shallow clouds is used. The best fit to each ob-20

served spectrum is obtained with either a Lognormal or a Generalized Gamma function
that has the same droplet number concentration and liquid water content, and a value
of the tuning parameter, σg for the Lognormal, ν1 for GG1 and ν3 for GG3, that min-
imizes the difference between an integral property of the observed spectrum and the
one of the parametric function. The integral properties considered here are M1, M2,25
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M5, M6. For each one separately, the value of the tuning parameter that minimizes the
mean absolute error between the property value of the observed spectrum (xm) and
the one derived from the fitted parametric function (xp) is calculated. The same pro-
cedure is applied to the relative error, where the absolute εabs and relative εrel errors
are defined as: εabs=xp−xm and εrel=xp/xm. The statistical adequacy of the tuning5

parameter value is then evaluated for each moment successively. Since there is no
reason for a single value of the tuning parameter to minimize the errors for the 4 mo-
ments concomitantly, a trade-of value is also evaluated in terms of absolute and relative
errors.

In the second step, a parameterization is proposed to allow the value of the tuning10

parameter to vary, and the resulting errors, both absolute and relative, are calculated
for comparison with the ones obtained in step 1.

5 The data sets

Cloud particle size distributions used in this study were collected during two airborne
field experiments: The ACE-2 campaign took place in June and July 1997 to document15

marine boundary layer stratocumulus clouds, north of the Canary islands (Brenguier
et al., 2000). The RICO campaign took place in December 2004 and January 2005
to study shallow precipitating cumulus clouds of the coast of the Caribbean Island of
Antigua and Barbuda within the Northeast Trades of the western Atlantic (Rauber et
al., 2007).20

The droplet spectra were measured with the Fast-FSSP, a droplet spectrometer that
covers a range from 1 to about 20–25µm in radius (Brenguier et al., 1998). The droplet
spectra are extended beyond 25µm with data from a PMS-OAP-200-X (PMS Inc, Boul-
der Colorado, USA) during ACE-2 and a PMS-OAP-260-X during RICO. The 200-X
measures drizzle particle sizes over 15 radius bins from 7.5 to 155µm, with a bin width25

of 10µm. The 260-X covers a larger range, from 2.5 to 317.5µm, with 63 bins of 5µm
width. Cloud droplets are then defined as particles with a radius smaller than 37.5µm.
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This value is selected because it corresponds to a bin limit in both the OAP-200-X and
-260-X and it is intermediate between the values used in most bulk parameterizations.
A sensitivity study suggests that the selected threshold radius value has no noticeable
impact on the results within the range from 27.5 to 37.5µm.

These two campaigns were selected because significant differences were expected5

between the stratocumulus and the shallow cumulus regimes. The depth of the stra-
tocumulus clouds in ACE-2 was a few hundreds of meters, while it reaches a few
kilometres for the RICO shallow cumuli. In ACE-2, the droplet number concentration
varied from less than 50 to more than 400 cm−3, while it was lower during RICO with
values less than 100 cm−3 in most cases. Light precipitation was observed in ACE-2,10

while it was slightly stronger in the RICO clouds. In general, the LWC in stratocumu-
lus remains close to adiabatic up to cloud top (Brenguier et al., 2003; Pawlowska and
Brenguier, 2003), while it is significantly diluted in the RICO cumulus clouds. Cloud
sampled during RICO show indeed that peak LWC values decrease continuously with
height down to about 50% of the adiabatic value 1 km above cloud base, while median15

LWC values drop down to about 30% of the adiabatic within the first 200 m.
Droplet spectra were sampled at 1 Hz (a flight distance of about 100 m). Cloudy

samples are defined as samples with a LWC greater than 0.025 g m−3 and a cloud
droplet number concentration Nc greater than 5 cm−3. Figure 1 shows a scatter-plot
of the droplet number concentration (M0) and the LWC (∝M3), with different colours20

for the ACE2 (blue) and the RICO (red) data sets. The number concentrations are
lower in RICO, but the LWC values are similar in both data sets, up to 2 g m−3. Overall,
the two campaigns provide a set of 27 623 cloud droplet spectra in total: 19 151 from
8 ACE-2 cases (fr9720, fr9721, fr9728, fr9730, fr9731, fr9733, fr9734, fr9735) and
8472 from 7 RICO cases (RF06, RF07, RF08, RF09, RF11, RF12, RF13), sampled at25

various levels from the cloud base to the top. Both data sets have first been analyzed
separately to derive tuning parameter values specific to the stratocumulus and cumulus
regimes. Interestingly, the conclusions are very similar and the analysis is presented
here with both data sets merged.
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6 From the small scale to the cloud system scale

In this exercise, the spatial scale is an important issue. Indeed, airborne cloud parti-
cle spectrometers have a limited sampling section, so that a very tiny fraction of air is
sampled along the flight track. For instance, the Fast-FSSP has a sampling section
of 0.1 mm2. Droplet counts are therefore cumulated over 100 m for the measured dis-5

tribution to become statistically significant (about 1000 droplets sampled at a number
concentration of 100 cm−3). For drizzle and precipitation drops, the number concen-
tration decreases exponentially with size, but the sampling section of the drizzle and
precipitation particle spectrometers does not increase accordingly. One is thus tempted
to increase the sample length, hence increase the number of sampled particles, to bet-10

ter characterize a spectrum. Droplet spectra, however, are highly variable at scales
smaller than 100 m (Pawlowska et al., 1997). This spatial variability raises two impor-
tant issues when averaging spectra over long distances for characterizing cloud system
representative properties.

First, the spatial variability is linearly smoothed out when cumulating particle counts15

over a long sample and this may become an issue if the physical process of interest
is highly non-linear. Although they are second order, the biases arising from using
non-linear combinations of linearly averaged microphysical parameters may thus oc-
casionally lead to flawed conclusions. A typical example is when characterizing the
spectral width for studies of the collection process. Indeed, the droplet collection (col-20

lision and coalescence) is highly sensitive to the presence of both small and large
droplets in the same micro-volume of cloudy air. Thus it depends non-linearly on the
width of the droplet spectrum. In cumulus clouds for instance, narrow droplet spec-
tra are observed at all levels, but their mode increases from cloud base to the top. If
droplet measurements are cumulated over flight legs ascending from the cloud base25

to the top, the resulting spectrum might thus be much broader than locally, hence sug-
gesting enhanced collection, while droplets located at different levels have no chance
to collide and coalesce. It is therefore recommended to cumulate droplet counts only
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on flight legs that are statistically homogeneous in term of spectral properties.
The second issue arises when averaging CDSD intensive properties, such as the

radius of the pth moment instead of extensive1 properties such as the moment it-
self. For instance the light extinction in a cloud depends on the second moment, as
σext=πQext M2=πQext Nr2

2 , where r2, is the mean radius of the 2nd moment or mean5

surface radius of the droplet spectrum. The mean extinction in a cloud layer, is there-
fore equal to 〈σext〉=πQext 〈M2〉, which is different from πQext 〈N〉 〈r2〉

2. The latter formu-
lation, however, is the most frequently used because observational data sets are often
processed to derive the mean droplet number concentration and the mean surface ra-
dius, or effective radius, instead of the mean second moment of the size distributions.10

Diluted cloud volumes often show intensive properties that are quite different from the
ones observed in undiluted volumes because of the impact of entrainment and mixing
processes (Burnet and Brenguier, 2007). However, when using the second formula-
tion, diluted volumes are given the same weight as the undiluted ones, while they very
little contribute to the mean value of the corresponding moment.15

In general, one shall therefore avoid averaging spectral properties such as any mean
radius of the distribution or ratio of such variables as the k coefficient in Martin et
al. (1994) that do not depend on the droplet concentration, hence might overemphasize
the contributions of highly diluted cloud volumes. The tuning of the parametric functions
described hereafter is thus based on moments of the size distribution instead of mean20

radii of the moments, and 4 moments (M1, M2, M5 and M6) are considered separately.

1 “intensive” and “extensive” are defined here with regards to the number of particles, instead
of number concentration or mixing ratio.
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7 Tuning of the parametric functions

7.1 Constant tuning parameter

Figure 2 summarizes the analysis. The first three rows show scatter-plots of the tuning
parameter values for the four moments, from left to right. The range of variation of the
moment values has been divided in 10 classes on a Log scale. The first row is for the5

Lognormal parametric function, the second one for the Generalized Gamma with α=1
(GG1), and the third one for the Generalized Gamma with α=3 (GG3). The last row
shows the number of samples in each moment class.

Each grey point represents the value of the tuning parameter that best fits the speci-
fied moment of an observed spectrum. Superimposed to the scatter-plot, two thin lines10

represent the 25th and 75th percentiles of the tuning parameter values in each moment
class. The circles and triangles are the tuning parameter values that minimize, in each
moment class, the arithmetic and the geometric standard deviation of the absolute and
relative errors, respectively. On top of each graph, the number in brackets on the left
(right) hand side is the tuning parameter value that minimizes the absolute (relative)15

error over the whole range of variation of the specified moment.
For the Lognormal distribution, the top row suggests that a σg value between 1.3 and

1.4 provides accurate estimations, for the moment values that are the most frequently
observed, i.e. 103 µm cm−3 for M1, 5.103 µm2 cm−3 for M2, from 106 to 2.107 µm5 cm−3

for M5 and from 107 to 2.108 µm6 cm−3 for M6. For M1 and M2, however, this value20

underestimates the optimum σg value at small moment values, hence overestimates
the small moment values, and inversely for the large moment values. For the higher
moments, M5 and M6, the optimum σg value does not vary significantly with the value
of the moment. The sensitivity test to the radius threshold value that separates droplets
from drops in the bulk scheme reveals that these two higher moments are more sensi-25

tive than the lower ones, although the impact, even with a threshold value of 27.5µm,
is hardly noticeable. This σg value is close to the revised value that was recommended
in the 9th inter-comparison exercise of the GCSS BLWG (σg=1.2) for the parameteri-
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zation of cloud droplet sedimentation (Ackerman et al., 2008).
For the Generalised Gamma distribution, the results are similar, with optimum values

of the tuning parameter ν of the order of 10 for GG1 and slightly larger than 1 for GG3,
although the trends are reversed compared to the Lognormal since increasing values of
the ν parameters correspond to narrower spectra. A value of ν3 equal to 1 corresponds5

in the formulation of the auto-conversion in Seifert and Beheng (2006, Eq. 4) to a νc
value equal to 0, which is commonly used.

This set of scatter-plots suggests that there is no single parameter value that min-
imizes both errors for the 4 moments concomitantly. The optimum value indeed de-
pends on the application and one might select a M1 optimum value for the prognostic10

of peak supersaturation in a CCN activation scheme, a M2 specific one for radiative
transfer and the sedimentation flux of particle number concentration, a M5 specific one
for the sedimentation flux of particle water content, and a M6 specific one for the re-
trieval of cloud properties from a radar reflectivity.

It might be questionable, and less practicable, to use different values of the tuning pa-15

rameter for the analytical function that describes the droplet distribution in a numerical
model, although this is a common practice when using in a numerical model parame-
terizations of diverse origins, hence relying on different values of the tuning parameter
or even different parametric functions. For instance the bulk microphysical schemes
tested by the GCSS boundary layer working group are based on a Lognormal function20

for parameterization of droplet sedimentation (Ackerman et al., 2008), whereas the au-
toconversion scheme often relies on different hypotheses. Some authors use different
distribution hypotheses in the same process parameterization (see Table 1 in Gilmore
and Straka, 2008). For better consistency, we propose a compromise that partly sat-
isfies all types of applications. A trade-off value of the tuning parameter is derived25

as:

p∗ =
1

8n

∑
i ,j,k

ni ,jpi ,j,k , (9)

where n is the total number of cloud samples, i∈[1:10] stand for the moment class,
17647

j∈[1,2,5,6] stands for the moment, and k∈[1,2], corresponds to either the absolute or
relative error. ni ,j , is the number of samples in class i of the moment Mj and pi ,j,k , is
the optimum tuning parameter value in the class i of the moment j , for the absolute
and relative errors, respectively.

This trade-off value of the tuning parameter, σ∗
g=1.34 for the Lognormal, ν∗1=10.3 for5

GG1 and ν∗3=1.11 for GG3, is represented in Fig. 2 by a horizontal bar and it is reported
in Table 2, with the resulting offset and standard deviations of the absolute and relative
errors.

Figure 3 shows scatter-plots of the absolute errors in each moment class, as in Fig. 2,
for the Lognormal (first row), the GG1 (second row) and the GG3 (third row) parametric10

functions. The grey points represent the error for each sampled spectrum, the thin
lines denote the 25th and the 75th percentiles of the absolute error distribution in each
class, and the circle and error bars indicate the arithmetic mean (offset) and standard
deviation of the absolute error values in each class. Note that for practical reasons, the
error values are normalized in each graph, as specified in the figure caption. Figure 415

is similar for the relative errors, although errors are not normalized in this case. These
figures confirm that a single parameter value provides accurate descriptions of the
droplet spectra in the most common range of moment values, but significantly deviates
at low moment values for the relative error and high moment values for both errors,
although such samples are less frequently observed.20

7.2 Variable tuning parameter

In a second step, we explore the potential of diagnosing the tuning parameter, using
the prognostic variables of a bulk parameterization, i.e. N or qc. The tuning parameter
shows the greatest sensitivity to the LWC. This is illustrated in Fig. 5 that is similar to
Fig. 2, except that the x-axis now represents the LWC.25

The optimum parameter values, in each qc class (10 classes) of each moment (4 mo-
ments) and for both the absolute (circles) and relative (triangles) errors, are combined
and the function of qc that best fits the 80 values is derived for the Lognormal, the GG1
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and the GG3 successively, leading to the following parameterizations:

σp
g = −0.056 · ln(qc) + 1.24, (10)

νp1 = 14.5 · qc + 6.7, (11)

νp3 = 1.58 · qc + 0.72, (12)

where qc is expressed in g m−3. They are represented in each graph of Fig. 5 by a5

thick line.
Figures 6 and 7, similar to Figs. 3 and 4 show the improvement on the absolute and

relative errors, respectively, in each moment class. The offsets and standard devia-
tions of the absolute and relative errors over the whole range of moment values are
summarized in Table 3.10

The comparison with Table 2, attests that both the absolute and relative errors have
been reduced in term of offset and standard deviation, although the main improvement
is for the absolute error at large values of the moments (Figs. 3 and 6), and for the
relative error at both small and large values of the moments (Figs. 4 and 7).

8 Summary and conclusions15

Droplet spectra measured in stratocumulus and shallow cumulus clouds have been
examined to fit three parametric functions, i.e. the Lognormal, and the Generalized
Gamma functions with α=1 and α=3, successively, that are frequently used in bulk
parameterizations of the microphysics to represent droplet size distributions.

These functions have three independent parameters. Two are constrained by the val-20

ues of the droplet number concentration and liquid water content. An optimum value
of the third parameter, σg for the Lognormal, ν1 for the GG1 and ν3 for the GG3, has
been derived for each measured spectrum, that minimizes the difference between the
observed spectrum and the parametric function. The difference has been measured
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using integral properties of the droplet spectra, namely 4 moments of the size distribu-
tion, M1 that is used in CCN activation schemes, M2 in radiative transfer calculations
and droplet sedimentation parameterization, M5 for parameterization of droplet sedi-
mentation, and M6 for radar reflectivity calculations.

The range of variation of each moment has been divided in 10 classes on a Logscale5

and the arithmetic and geometric means of the optimum parameter values have been
calculated in each class. The absolute and relative errors have similarly been quanti-
fied in each class, and over the whole range of variation of each moment. As expected,
the optimum parameter values however are slightly different depending on which inte-
gral property is used for the minimization. A trade-off parameter value has then been10

proposed, that minimizes both the absolute and the relative errors on the 4 moments
of the distributions.

In a second step, parameterizations are proposed where the optimum parameter
value depends on the LWC, and the absolute and relative errors have been quantified
for each moment separately. Such a varying tuning parameter slightly improves both15

the absolute and relative errors for the moment values that are the most frequently
observed, and it significantly improves the error at the lowest and largest values of the
moments.

The potential of using the third parameter as a prognostic variable in a bulk scheme
has been explored, but because of the large variability of spectral shapes and the20

diversity of physical processes that are responsible for this variability, condensational
growth, mixing and evaporation, droplet scavenging, and collection, we have not been
able to isolate one process that could be considered as the most determinant. Further
analysis or numerical simulations with bin microphysical schemes might help at solving
the issue. However, considering the limitations inherent to the bulk approach, one might25

also conclude that the accuracy of the parameterizations proposed here is sufficient for
most of the topics that can be addressed with a bulk scheme.
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Table 1. Typical bulk parameterizations using two particle categories with, from left to right, the
value of the threshold radius between the two categories, the number of independent variables
for the description of the droplet size distribution (CDSD), the parameterized microphysical pro-
cesses, the methodology adopted for the development of the parametrization, and the CDSD
parametric representation.

Number of independent
Separation variables for the Microphysical Methodology&

Reference radius r0 description of the CDSD processes CDSD hypothesis

Kessler NA qc autoconversion Empirical CDSD:
(1969) monodispersed

Manton and Cotton NA qc, Nc autoconversion Analytical CDSD:
(1977) monodispersed

Berry and Reinhardt variable, qc, Nc, σx autoconversion Empirical, ∼30
(1974) ∼41µm spectra from 0-D bin

simulations, CDSD: GG3

Khairoutdinov and Kogan 25µm qc, Nc autoconversion Empirical, 100 000 spectra
(2000) from 3-D bin simulations of

Sc, CDSD: GG1

Liu and Daum NA qc, Nc, d autoconversion Analytical,
(2004) CDSD: GG1

Seifert and Beheng 41 µm qc, Nc, autoconversion Analytical and empirical,
(2001, 2006) νc=ν3 − 1 GG3 and spectra from 1-D

bin simulations, CDSD: GG3

Cohard and Pinty NA qc, NCCN activation Analytical
(2000) CDSD: GG3

Ackerman NA qc, Nc, σg Cloud droplet Analytical
(2008) sedimentation CDSD: Lognormal
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Table 2. Values of the arithmetic mean µabs and the arithmetic standard deviation σabs of the
absolute errors and of the geometric mean µrel and the geometric standard deviation σrel of
the relative errors calculated for M1, M2, M5, M6, for the Lognormal, the GG1 and the GG3
parametric functions, when using the constant trade-off tuning parameters values, σ∗

g for the
Lognormal, ν∗1 for the GG1 and ν∗3 for the GG3.

M1 M2 M5 M6

Lognormal, µabs±σabs
σ∗
g=1.34 −0.82±31.1 −40±266 7.9±30.3 23.7±103.1

(µm cm−3) (µm2 cm−3) (105µm5 cm−3) (106 µm6 cm−3)

µrel
×
/
σrel

1.001×
/
1.054 1.004×

/
1.052 0.972×

/
1.332 0.910×

/
1.751

Generalized Gamma, µabs±σabs
α=1, ν∗1=10.3 −5.3±32.2 −62±274 6.5±28.9 16.9±93.2

(µm cm−3) (µm2 cm−3) (105 µm5 cm−3) (106 µm6 cm−3)

µrel
×
/
σrel

1.002×
/
1.054 1.000×

/
1.052 0.958×

/
1.332 0.870×

/
1.751

Generalized Gamma, µabs±σabs
α=3, ν∗3=1.11 −12.0±34.4 −84±282 3.4±25.8 5.1±77.9

(µm cm−3) (µm2 cm−3) (105 µm5 cm−3) (106 µm6 cm−3)

µrel
×
/
σrel

0.991×
/
1.054 0.996×

/
1.052 0.926×

/
1.332 0.803×

/
1.751

17655

Table 3. Same as Table 2 when using the variable tuning parameter parameterizations, σp
g for

the Lognormal, νp1 for the GG1 and νp3 for the GG3.

M1 M2 M5 M6

Lognormal, µabs±σabs

σp
g 4.3±28.9 23±227 0.2±18.2 1.2±54.2

(µm cm−3) (µm2 cm−3) (105 µm5 cm−3) (106 µm6 cm−3)

µrel
×
/
σrel

1.007×
/
1.052 1.003×

/
1.050 0.978×

/
1.292 0.918×

/
1.651

Generalized Gamma, µabs±σabs

α=1, νp1 −2.3±29.0 −17±226 0.3±18.1 −1.4±53.5
(µm cm−3) (µm2 cm−3) (105 µm5 cm−3) (106 µm6 cm−3)

µrel
×
/
σrel

0.997×
/
1.053 0.996×

/
1.050 0.973×

/
1.300 0.893×

/
1.672

Generalized Gamma, µabs±σabs

α=3, νp3 −8.6±29.9 −37±226 −1.7±18.0 −8.9±52.7
(µm cm−3) (µm2 cm−3) (105 µm5 cm−3) (106 µm6 cm−3)

µrel
×
/
σrel

0.984×
/
1.052 0.990×

/
1.050 0.943×

/
1.303 0.826×

/
1.682
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Fig. 1. Scatter-plot of the droplet number concentration, Nc, and the LWC, qc, for droplet
spectra sampled at 1 Hz, during the ACE2 (blue) and RICO (red) field experiments.
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Fig. 2. Scatter-plots (grey points) of the tuning parameter values as a function, from left to right, of the M1, M2, M5,
and M6 moment values. The x-axis is divided in 10 classes on a Logscale. The thin lines denote the 25th and the 75th
percentiles of the tuning parameter distribution in each class. The circles and triangles denote the tuning parameter
value that minimizes the standard deviation of the absolute error and the geometric standard deviation of the relative
error in each class, respectively. The horizontal thick line denotes the constant trade-off value of the tuning parameter.
The top row is for the Lognormal function, the second and third rows are for the Generalized Gamma functions with
α=1 and α=3, respectively. On top of each graph, the number in brackets on the left (right) hand side is the tuning
parameter value that minimizes the absolute (relative) error over the whole range of variation of the specified moment.
The fourth row shows the number of sampled spectra in each moment class.
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Fig. 3. Scatter-plots (grey points) of the absolute errors between the observed spectrum mo-
ment value and the one of the parametric function using the trade-off value of the tuning param-
eter σ∗

g=1.34 for the Lognormal function (top row), ν∗1=10.3 for GG1 (2nd row), and ν∗3=1.11 for
GG3 (3rd row), as a function of the moment values. The X-axis is divided in 10 classes as in
Fig. 2. The thin lines denote the 25th and the 75th percentiles of the absolute error distribution
in each class. The circles and the error bars denote the arithmetic mean and the arithmetic
standard deviation of the absolute error values in each class. The absolute errors are normal-
ized from left to right respectively by 100µm cm−3 for M1, 1000µm2 cm−3 for M2, 107 µm5 cm−3

for M5 and 109 µm6 cm−3 for M6.
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Fig. 4. Same as Fig. 3 for the relative errors. The circles and the error bars denote the
geometric mean and the geometric standard deviation of the relative error value distribution in
each moment class. The relative errors are not normalized.
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Fig. 5. Same as Fig. 2 but plotted as a function of the LWC, qc. The thick line represents the
proposed parameterizations for the variable tuning parameter.
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Fig. 6. Same as Fig. 3 using the proposed parameterization for the variable tuning parameter.
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Fig. 7. Same as Fig. 4 using the proposed parameterization for the variable tuning parameter.
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