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Abstract

We show that methylglyoxal forms light-absorbing secondary organic material in aque-
ous ammonium sulfate and ammonium nitrate solutions mimicking tropospheric aerosol
particles. The light-absorbing products form on the order of minutes, and solution com-
position continues to change over several days. The results suggest an aldol conden-5

sation pathway involving the participation of the ammonium ion. Aqueous solutions
of methylglyoxal, with and without inorganic salts, exhibit surface tension depression.
Methylglyoxal uptake could potentially change the optical properties, climate effects,
and heterogeneous chemistry of the seed aerosol over its lifetime.

1 Introduction10

Laboratory and field studies suggest that carbonyl-containing volatile organic com-
pounds, when absorbed by aqueous aerosol particles or cloud droplets, participate
in aqueous-phase chemistry to form low-volatility secondary organic material (SOA)
(Jang et al., 2002; Kroll et al., 2005; Liggio et al., 2005a, b; Volkamer et al., 2006,
2007, 2009; Loeffler et al., 2006; Zhao et al., 2006; Gao et al., 2006; Altieri et al., 2008;15

Carlton et al., 2008; Nozière et al., 2009; Fu et al., 2009; Shapiro et al., 2009; Galloway
et al., 2009; El Haddad et al., 2009; De Haan et al., 2009). There is evidence that SOA
formation may affect properties of the seed aerosol such as CCN activity (Cruz and
Pandis, 1997; Hartz et al., 2005; King et al., 2007, 2009; Englehardt et al., 2008;
Duplissy et al., 2008; Michaud, et al., 2009) optical properties (Saathoff et al., 2003;20

Nozière et al., 2007, 2009; Nozière and Esteve, 2007; Casale et al., 2007; Shapiro
et al., 2009; De Haan, et al., 2009) and heterogeneous reactivity towards gases such
as N2O5 (Folkers et al., 2003; Anttila et al., 2006). A variety of potentially surface-active
SOA products have been proposed, including organic acids, organosulfates, nitrogen-
containing organics, aldol condensation products, and highly oxygenated oligomeric25

material. In an aqueous aerosol particle, surface-active products may partition to the
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gas-particle interface, lowering the surface tension (and thus the critical supersatu-
ration required for cloud droplet activation) and acting as a barrier to mass transport
between the gas and aqueous phases. Light-absorbing SOA products which could
increase the absorption index of the seed aerosol have also been identified in labora-
tory studies. Aldehydes have been reported to undergo aldol condensation in aqueous5

aerosol mimics to form π-conjugated species (Nozière et al., 2007; Nozière and Es-
teve, 2007; Casale et al., 2007). We recently reported the formation of light-absorbing,
oligomeric molecules in aqueous aerosol mimics containing glyoxal and ammonium
salts (Shapiro et al., 2009). De Haan et al. (2009) observed browning upon the reac-
tion of glyoxal with amino acids in aerosol and cloud droplet mimics.10

Methylglyoxal is an atmospheric oxidation product of many anthropogenic and bio-
genic volatile organic compounds (Tuazon et al., 1986; Grosjean et al., 1993; Smith
et al., 1999). Methylglyoxal becomes hydrated and forms acetal and hemiacetal
oligomers in aqueous solution (Nemet et al., 2004; Paulsen et al., 2005; Loeffler et al.,
2006; Zhao et al., 2006; Krizner et al., 2009). Kalberer et al. (2004) suggested that15

methylglyoxal acetal oligomers could explain their observation of polymeric material
in secondary organic aerosols formed in a reaction chamber by the photooxidation of
1,3,5-trimethylbenzene. Barsanti and Pankow (2005) and Krizner et al. (2009) pre-
dicted that aldol condensation should be favorable for methylglyoxal in aerosols. How-
ever, Kroll et al. (2005) observed no particle growth upon exposing acidic ammonium20

sulfate seed aerosols to gas-phase methylglyoxal in an aerosol chamber, in contrast
with glyoxal, which caused significant particle growth under similar conditions.

We report that methylglyoxal forms light-absorbing secondary organic products in
aqueous ammonium salt solutions mimicking tropospheric aerosol particles. Prod-
uct formation has been characterized using UV-Vis spectrophotometry and by aerosol25

chemical ionization mass spectrometry, reported in a companion paper (Sareen et al.,
2009). Pendant drop tensiometry measurements show that aqueous solutions of
methylglyoxal exhibit surface tension depression, and the effect is enhanced when
NaCl or (NH4)2SO4 is present. These observations add to the growing body of ev-
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idence that secondary organic aerosol formation via heterogeneous processes may
affect seed aerosol properties.

2 Methods

Solutions were prepared using Millipore water and high concentrations of the salt of
interest (3.1 M (NH4)2SO4, 5.1 M NaCl, 1.18 M Na2SO4, 8.7 M NH4NO3), in order to5

mimic the composition of an aqueous atmospheric aerosol particle (Tang and Munkel-
witz, 1994; Tang et al., 1997). Methylglyoxal concentrations ranged from 0–2.0 M, cor-
responding to ∼0–25 wt% of the solute. Methylglyoxal was introduced from a 40 wt%
aqueous solution (Sigma Aldrich). Mixing time was counted as time after the 40 wt%
methylglyoxal solution was introduced to the aqueous salt solution. The aqueous10

methylglyoxal stock solution was pH=2(±1) when tested with pH paper, and the re-
action mixtures were pH=2(±1), without buffering or further addition of acid. This is
within the range of pH relevant to tropospheric aerosols (Keene et al., 2004; Zhang
et al., 2007). Solutions were prepared in 100 mL Pyrex volumetric flasks. Pyrex is
opaque to light with wavelengths <280 nm (Corning, Inc.), but the samples were not15

further protected from ambient light except for control experiments as specified in the
text. All experiments were performed at ambient temperature and pressure.

The UV-Vis absorption spectra of the reaction mixtures were measured using an HP
8453 UV-Visible Spectrophotometer with a 10 mm open-top quartz cuvette.

Surface tension was measured using pendant drop tensiometry as described in20

Shapiro et al. (2009). Briefly, droplets of sample solution were suspended from the
tip of a glass capillary tube using a 100 µL syringe mounted inside a chamber with
quartz windows. Images were captured as described by Anastasiadis et al. (1987).
The method of Canny (1986) was implemented in MATLAB 7.0 (The MathWorks, Inc.)
for edge detection. Surface tension was calculated according to:25

σ =
∆ρgd2

e

H
(1)
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where σ is surface tension, ∆ρ is the difference in density between the solution and
the gas phase, de is the equatorial diameter of the droplet, and H is the shape factor
(Adamson and Gast, 1997). The method of several selected planes was used for
determining H based on the diameter of the drop at five intervals along the drop axis
(Juza, 1997). Solution density was measured using an analytical balance readable to5

within ±10 µg (Denver Instruments).
Geometry optimizations and energy calculations were performed using Jaguar 6.0

(Schrodinger, Inc.) with the ChemBio3D interface (CambridgeSoft) in order to evalu-
ate the UV-Vis absorption of potential products and the energetics of reaction path-
ways. Density functional theory (DFT) with the B3LYP functional and the cc-pVTZ(-f)10

basis set (Kendall et al., 1992) was used to predict the HOMO-LUMO difference (and
thus UV-Vis absorption wavelengths) of proposed products. For purposes of compar-
ison with Krizner et al. (2009) some additional calculations were performed with the
6-311G** basis set and Poisson-Boltzmann solvation (water solvent, ε=80.37, probe
radius=1.40 Å). The Gibbs free energy of solvated species was calculated using half15

the gas phase entropy following Krizner et al. (2009).

3 Results

Solutions containing ≥0.16 M methylglyoxal and (NH4)2SO4 became visibly colored
immediately after mixing and became progressively darker in color with time. The color
varied noticeably with initial methylglyoxal concentration; solutions with higher initial20

concentrations of methylglyoxal were darker in color.

3.1 UV-Vis absorption

The products formed by methylglyoxal in aqueous solutions containing (NH4)2SO4 or
NH4NO3 absorb light at UV and visible wavelengths (ref. Figs. 1–3).

Methylglyoxal in aqueous solution has a broad absorbance peak at 290 nm at am-25

15545

bient temperatures (Nemet et al., 2004). A kinetics study of 1.62 mM methylglyoxal in
3.1 M (NH4)2SO4(aq) (Fig. 1a) shows that after a delay of ∼1 h, peaks grow in at 213 nm
and 286 nm with roughly exponential time dependence. Upon mixing of a solution of
1.62 M aqueous methylglyoxal and 3.1 M (NH4)2SO4, absorbance initially increases
across all wavelengths (Fig. 1b). After 1 h, the absorption spectrum is saturated for5

λ=360 nm, and the baseline at high wavelengths returns to <0.5 AU. With increasing
time, the saturated region of the spectrum extends to longer wavelengths and the tail
shows increasing absorption at high wavelengths (λ>500 nm). Significant absorption at
550 nm is exhibited at <1 h and after 12 h, with absorption at up to 700 nm developing
within 2–3 d.10

The effect of initial methylglyoxal concentration on the UV-Vis spectra of solutions
containing 3.1 M (NH4)2SO4 24 h after mixing is shown in Fig. 2. As shown in Fig. 2b
and c, the absorbance at 282 nm and at 550 nm at 24 h is linearly dependent on the ini-
tial methylglyoxal concentration. The results of several control experiments are shown
in Fig. 3. Control samples containing 1.62 M methylglyoxal and 5.1 M NaCl or 1.18 M15

Na2SO4 exhibited UV-Vis spectra similar to aqueous methylglyoxal in the absence of
salt after 24 h. A sample initially containing 1.62 M methylglyoxal and 3.1 M (NH4)2SO4
was protected from light until analysis by covering the reaction vessel with aluminum
foil, and the resulting spectrum at 24 h was identical to that of an unprotected solution
with the same composition.20

3.2 Surface tension

Solutions containing 3.1 M (NH4)2SO4 and varying initial concentrations of methylgly-
oxal exhibit significant surface tension depression compared to 3.1 M (NH4)2SO4 solu-
tions without organics (Fig. 4). The surface tension depression follows a Langmuir-like
dependence on initial methylglyoxal concentration, with a minimum (saturation) surface25
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tension, σmin, of 41(±2) dyn cm−1 based on a fit to the data using the following equation:

σ = σ0 − S
bM0

1 + bM0
(2)

where σ is the surface tension, σ0 is the surface tension of the solution with no methyl-
glyoxal, M0 is the initial methylglyoxal concentration, and S and b are fit parameters.
Values of σ0 for (NH4)2SO4(aq) and NaCl(aq) were taken from the International Critical5

Tables (2003). The physical interpretation of S is the surface tension depression when
the surface is saturated, such that σmin=σ0−S, and b is an equilibrium coefficient that
describes surface-bulk partitioning. A time series was performed on a solution initially
containing 1.62 M methylglyoxal and 3.1 M (NH4)2SO4. The measured surface ten-
sion fluctuated for 2.5 h before stabilizing at 45(±1) dyn cm−1, then slowly decreased10

over the next 21.5 h to the minimum value (41(±2) dyn cm−1). Control experiments
were performed in order to evaluate the role of (NH4)2SO4. For aqueous methylgly-
oxal solutions with no salts present σmin=52(±3) dyn cm−1. Therefore, while hydrated
methylglyoxal and/or the oligomers it forms in aqueous solution are surface-active, the
overall surface-tension lowering effect is less than when (NH4)2SO4 is present in so-15

lution. Solutions containing 5.1 M NaCl and varying amounts of methylglyoxal follow
a trend similar to that of the (NH4)2SO4 solutions, with σmin=43(±2) dyn cm−1 (Fig. 4).

4 Discussion

The UV-Vis absorption data give evidence for reactions occurring on multiple
timescales to produce at least two generations of products. Our observation that the20

UV-Vis spectrum of the methylglyoxal/(NH4)2SO4 solution was the same at 24 h re-
gardless of whether the solution was protected from light indicate that the reactions
leading to light-absorbing compounds are not photochemical (Altieri et al., 2008). Our
observation that methylglyoxal forms light-absorbing compounds when (NH4)2SO4 or
NH4NO3 was present, but not with NaCl and Na2SO4, suggests that NH+

4 plays a role25
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in the mechanism. We propose that, in analogy to glyoxal, NH+
4 participates via the

formation of an iminium intermediate, or by acting as a Brønsted acid (Nozière et al.,
2009; Galloway et al., 2009; Shapiro et al., 2009). The consequences of this could
be a) the formation of species containing C-N bonds and b) facilitated oligomeriza-
tion (acetal/hemiacetal formation and aldol condensation). Both C=N bonds and aldol5

condensation products may contribute to the observed absorbance in the visible. The
calculations of Barsanti and Pankow (2005) and Krizner et al. (2009) suggest that aldol
condensation should be favorable for methylglyoxal in aerosols, and it has long been
known that methylglyoxal undergoes aldol condensation in the presence of amino acids
to form brown products (Enders and Sigurdsson, 1943).10

Singly hydrated methylglyoxal has been reported to be the dominant monomeric
species in aqueous methylglyoxal systems (Nemet et al., 2004). Singly hydrated
methylglyoxal may participate in self-aldol condensation via two possible pathways
initiating with enol formation with the C=C double bond forming from either terminal
carbon, as shown in Scheme 1. Note that we refer to the overall process of aldol15

addition followed by dehydration as aldol condensation (Muller, 1994).
Aldol addition via pathway (1) is likely to terminate in a dimer or trimer due to forma-

tion of organic acid or ketone end groups (e.g. species (c)–(g), Table 1). Additionally,
because of the methyl group, many of the products of aldol addition via pathway (1)
cannot proceed with dehydration (e.g. species (g), Table 1). Pathway (2) results in car-20

bonyl termination (e.g. species (h) and (i), Table 1) and therefore aldol condensation
could propagate beyond the trimer. The products would absorb at increasingly high
wavelengths as the length of the conjugated polymer chain increases (Hudson and
Kohler, 1974).

Krizner et al. (2009) showed that pathway (2) is thermodynamically favorable for25

aqueous methylglyoxal (they did not study pathway (1)). Our B3LYP/6-311G** calcu-
lations with Poisson-Boltzmann solvation show that ∆G=10.5 kcal mol−1 for the forma-
tion of the pathway (1) enol from singly hydrated methylglyoxal, close to Krizner et al.’s
value of 11.9 kcal mol−1 for the formation of the pathway (2) enol, suggesting that both
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enol species should be present in small quantities at equilibrium. Our calculations
also show that the formation of a pathway (2) enol is more energetically favorable
(∆G=4.13 kcal mol−1) than formation of the pathway (1) enol (∆G=36.2 kcal mol−1) for
singly hydrated imine-substituted methylglyoxal (species (a), Table 1). This is con-
sistent with NH+

4 promoting pathway (2) over pathway (1), resulting in light-absorbing5

products. However, we anticipate that the concentration of imine-substituted species
will be low due to the low NH3 concentrations in our pH=2 solutions.

Referring to Fig. 1a, based on our B3LYP/cc-pvtz(-f) predictions, the species ab-
sorbing at 213 nm could correspond to an aldol addition product such as species (f)
or (g) in Table 1. Acetals such as species (b) in Table 1 may also absorb at this10

wavelength. Aqueous methylglyoxal solutions with no salts present absorb at 290 nm,
and this has been attributed to carbonyl-containing monomer and oligomer compounds
(Nemet et al., 2004). Our observation of increasing absorbance at 286 nm with time
indicates a shift in equilibrium towards species predicted to absorb near that wave-
length, such as unhydrated methylglyoxal (B3LYP/ccptvz(-f) calculated λ=291.1 nm),15

or species (c), which is the aldol condensation product corresponding to species (f)
(λ=271.1 nm). The pathway (2) aldol addition product species (h) is predicted to ab-
sorb at 320 nm.

The initial increase in baseline UV-Vis absorption upon mixing of aqueous methylgly-
oxal and (NH4)2SO4 demonstrated in Fig. 1b indicates the fast formation of at least one20

light-absorbing reaction intermediate that is consumed in later steps of the mechanism
(or as the equilibrium system recovers from the perturbation). Using the equilibrium
constant data from Krizner et al. (2009), we predict that 99% of the methylglyoxal in
aqueous solution is monomeric. Due to its fast formation it is expected that the absorb-
ing intermediate is a first-generation product of a monomer species reacting with am-25

monium sulfate or with itself. Singly hydrated imine-substituted methylglyoxal (Table 1
species (a)), the expected reaction product between singly hydrated methylglyoxal and
ammonium sulfate, is predicted to absorb at low wavelengths (183.5 nm). Therefore we
infer that the intermediate is formed by the reaction of two monomeric species. This
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reaction necessarily takes place in conjunction with the existing network of equilibrium
reactions in aqueous methylglyoxal solution, thus complicating analysis of the kinetic
data. We may make a crude estimate of the rate constant for this process using a sim-
plified model as follows: The evolution of a dimer species P1 with time, assuming no
side reactions and an irreversible reaction, is given by5

[P1] =
1
2

[
M0 −

(
1
M0

+ 2kt
)−1

]
(3)

where M0 is the initial monomer concentration (taken to be 1.62 M) and k is the rate
constant. An upper bound for the rate constant for this process of k≤2 M−1 min−1 can
be estimated by assuming that 90% of the monomer initially present in the solution is
consumed to form the dimer product within 3 min. This upper bound value is roughly 4010

times greater than the aldol addition rate constant estimated by Krizner et al. (2009).
The data in Fig. 2b and c demonstrate a linear dependence for the absorbance

at 282 nm and 550 nm on initial methylglyoxal concentration 24 h after mixing. The
absorbance at 550 nm also shows a linear dependence on time for t>12 h. Therefore
the slow buildup of the product P2 responsible for the increase in absorption at 550 nm15

at long times can be modeled by

[P2] = k IMot (4)

where k I is the (pseudo-) first-order rate coefficient. A linear fit to the data in Fig. 2c
or the data for t>12 h in the lower panel of Fig. 1b can yield k I if the molar absorptivity
of the species absorbing at 550 nm is known. Assuming that the absorbing species is20

at least a dimer, an upper bound for its concentration after 98 h is 0.81 M. Following
Beer’s law we then obtain a lower-bound estimate of the molar absorptivity at 550 nm
of ε≥3.68 L mol−1cm−1. Using this value and the slope from either fit we find an upper
limit for the rate coefficient of the slow process, k I≤8×10−5 min−1.

Surface tension depression for methylglyoxal solutions containing 5.1 M NaCl or25

3.1 M (NH4)2SO4 is greater than that observed for aqueous methylglyoxal in the ab-
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sence of salts. The observed enhancement in surface tension depression is likely to
be a physical effect of the salts rather than an effect of especially surface-active prod-
ucts formed by a chemical reaction of methylglyoxal with the salts. High salt concentra-
tions can result in a decreased critical micelle concentration due to charge screening,
and thus cause enhanced film formation (Matijevic and Pethica, 1958; Li et al., 1998).5

Salts can also decrease the solubility of organics, commonly referred to as “salting out”
(Setschenow, 1889), possibly resulting in surface film formation. Salts have commonly
been observed to enhance the surface tension lowering effects of HULIS and organic
diacids (Shulman et al., 1996; Kiss et al., 2005; Asa-Awuku et al., 2008).

Glyoxal was previously observed not to be surface-active in hydrated form or to10

form surface-active products in aqueous (NH4)2SO4 solutions (Shapiro et al., 2009).
Compared with glyoxal, the methyl group adds hydrophobicity to methylglyoxal and its
oligomer products, increasing their surface activity.

5 Atmospheric implications

What we have observed for the methylglyoxal/(NH4)2SO4 system is another exam-15

ple of aerosol-phase chemistry which may increase the absorption index of atmo-
spheric aerosols with aerosol age. Following Nozière et al. (2009), the extinction coef-
ficient at 550 nm for the solution initially containing 1.62 M methylglyoxal and 3.1 M
(NH4)2SO4 after 3 min is ε550=2.11 cm−1 and the dimensionless absorption index,
A550=λε550/4π=9.23×10−6. At 98 h, ε550=2.98 cm−1 and A550=1.3×10−5.20

Our observation of surface tension depression is consistent with observations of sur-
face tension depression by HULIS in ambient aerosol samples (Kiss et al., 2005; Salma
et al., 2006; Taraniuk et al., 2007; Asa-Awuku et al., 2008). Decreased aerosol surface
tension leads to a reduction in the critical supersaturation necessary for cloud droplet
activation according to Kohler theory (Kohler, 1936). Surface tension depression in25

aqueous aerosols by methylglyoxal SOA material could therefore result in increased
CCN activation. For particles of a given size, the effect of surface tension depression
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on CCN activation can be expressed as:

s∗c =
(

σ
σw

)3/2

sc (5)

where s∗c is the critical supersaturation, σw and σ are the surface tension of water and
the particle, respectively, and sc is the critical supersaturation for a particle with the
surface tension of water. For sufficiently high methylglyoxal concentration we expect5

σ/σw=0.6 (see Fig. 4), in which case the critical supersaturation will be 46% that of
a particle with σ=σw. Relative to an aqueous ammonium sulfate particle with no organ-
ics present, the critical supersaturation could be reduced by 62% at these methylglyoxal
concentrations.

The small size, and thus high surface area-to-volume ratio of a submicron aerosol10

particle means that, compared to the bulk solutions used here, a greater fraction of the
total surfactant molecules present in the aerosol will partition to the interface. This will
raise the number of molecules that can be present before a full monolayer is formed
and the critical micelle concentration (CMC) is reached (McNeill et al., 2006). Based
on this effect, we would expect the minimum surface tension in an aerosol particle to15

be similar to what was observed here, but the plateau region of the surface tension
curve may not be reached until higher methylglyoxal concentrations. However, this
effect may be balanced by the fact that the small size of aerosol particles also leads to
supersaturated salt concentrations which were not accessible in this study (Tang and
Munkelwitz, 1994; Tang, 1997; Tang et al., 1997). The CMC lowering effect of the salt20

and the increased “salting-out” may counteract the size effect.
The atmospheric significance of the methylglyoxal heterogeneous SOA formation

pathway will depend on the uptake of methylglyoxal from the gas phase into the aerosol.
Like glyoxal, because of oligomer formation it is possible to achieve high concentrations
of methylglyoxal in aqueous solution. However, the effective Henry’s law coefficient for25

methylglyoxal in water has been reported to be orders of magnitude lower than that
of glyoxal (Betterton and Hoffmann, 1988; Zhou and Mopper, 1990). The effective
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Henry’s law coefficient may increase when ammonium sulfate is present in the aqueous
phase due to the aqueous-phase chemistry we have observed here. However, Kroll
et al. (2005) reported negligible particle growth when ammonium sulfate particles were
exposed to ∼960 ppb of methylglyoxal in aerosol chamber experiments on a timescale
of several hours. Surface film formation such as is suggested by our surface tension5

measurements, even at submonolayer coverages (i.e. concentrations below the CMC),
can also inhibit the reactive uptake of gas-phase species into the aerosol (Folkers et al.,
2003; Thornton and Abbatt, 2005; McNeill et al., 2006; Anttila et al., 2006; McNeill
et al., 2007; Stemmler et al., 2008). Film formation upon uptake of methylglyoxal to
the aerosol could result in suppressed VOC uptake (and therefore suppressed SOA10

formation and particle growth).
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Table 1. Proposed reaction products. Predictions for the energy of the gas phase HOMO-
LUMO transition and the wavelength of UV-Vis absorption from DFT B3LYP/cc-pvtz(-f) simula-
tions are shown. References are indicated by: 1) Nemet et al., 2004 2) Zhao et al., 2006 3)
Krizner et al., 2009.
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Figure 1. UV-Vis spectra of aqueous solutions containing 3.1M (NH4)2SO4 and a) 1.62 mM 

methylglyoxal and b) 1.62 M methylglyoxal as a function of time after mixing. Absorbance is 

shown as a function of wavelength in the upper panels, and absorbance at selected 

wavelengths is shown in the lower panels. Error bars reflect uncertainty in the measured 

absorbances based on variation observed in the baseline signal.  

 

Fig. 1. UV-Vis spectra of aqueous solutions containing 3.1 M (NH4)2SO4 and a) 1.62 mM
methylglyoxal and b) 1.62 M methylglyoxal as a function of time after mixing. Absorbance is
shown as a function of wavelength in the upper panels, and absorbance at selected wave-
lengths is shown in the lower panels. Error bars reflect uncertainty in the measured ab-
sorbances based on variation observed in the baseline signal.
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Figure 2. UV-Vis spectra of aqueous solutions containing 3.1 M (NH4)2SO4 and varying 

initial concentrations of methylglyoxal, 24 hr after mixing. Absorbance is shown as a function 

of wavelength in panel (a). Absorbance at 282 nm and 550 nm vs. initial methylglyoxal 

concentration are shown in panels (b) and (c), respectively, along with linear least squares fits 

to the data. Error bars reflect uncertainty in the measured absorbances based on variation 

observed in the baseline signal.  

Fig. 2. UV-Vis spectra of aqueous solutions containing 3.1 M (NH4)2SO4 and varying initial
concentrations of methylglyoxal, 24 h after mixing. Absorbance is shown as a function of wave-
length in panel (a). Absorbance at 282 nm and 550 nm vs. initial methylglyoxal concentration
are shown in panels (b) and (c), respectively, along with linear least squares fits to the data.
Error bars reflect uncertainty in the measured absorbances based on variation observed in the
baseline signal.
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Figure 3. UV-Vis spectra of control solutions. Absorbance is shown as a function of 

wavelength. Each aqueous solution initially contained 1.62 M methylglyoxal and: no salt, 5.1 

M NaCl, 1.18 M Na2SO4, 8.7 M NH4NO3, or 3.1 M (NH4)2SO4. Also shown is the spectrum 

of a solution initially containing 1.62 M methylglyoxal and 3.1 M (NH4)2SO4 which was 

protected from light until analysis. All spectra were obtained 24 h after mixing, except for the 

NH4NO3 solution, which was measured at 96 h.  

Fig. 3. UV-Vis spectra of control solutions. Absorbance is shown as a function of wavelength.
Each aqueous solution initially contained 1.62 M methylglyoxal and: no salt, 5.1 M NaCl, 1.18 M
Na2SO4, 8.7 M NH4NO3, or 3.1 M (NH4)2SO4. Also shown is the spectrum of a solution initially
containing 1.62 M methylglyoxal and 3.1 M (NH4)2SO4 which was protected from light until anal-
ysis. All spectra were obtained 24 h after mixing, except for the NH4NO3 solution, which was
measured at 96 h.
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Figure 1. UV-Vis spectra of aqueous solutions containing 3.1M (NH4)2SO4 and a) 1.62 mM 

methylglyoxal and b) 1.62 M methylglyoxal as a function of time after mixing. Absorbance is 

shown as a function of wavelength in the upper panels, and absorbance at selected 

wavelengths is shown in the lower panels. Error bars reflect uncertainty in the measured 

absorbances based on variation observed in the baseline signal.  

 

Fig. 4. Results of pendant drop tensiometry measurements of aqueous mixtures as a function
of initial methylglyoxal concentration for aqueous solution, 3.1 M (NH4)2SO4(aq), and 5.1 M
NaCl(aq). The ratio of measured surface tension to the measured surface tension of Millipore
water is shown. The measurements were made ≥24 h after mixing. Each point reflects the
weighted average of five to eight measurements, and the error bars represent the standard
deviation in the raw data. The best fit curve to each data set based on Eq. (2) is also shown.
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Scheme 1. Proposed reaction pathways for methylglyoxal.  
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