Atmos. Chem. Phys. Discuss., 8, 6009-6034, 2008
www.atmos-chem-phys-discuss.net/8/6009/2008/
doi:10.5194/acpd-8-6009-2008
© Author(s) 2008. This work is distributed
under the Creative Commons Attribution 3.0 License.
Review Status
This discussion paper has been under review for the journal Atmospheric Chemistry and Physics (ACP). Please refer to the corresponding final paper in ACP.
Multiphase modeling of nitrate photochemistry in the quasi-liquid layer (QLL): implications for NOx release from the Arctic and coastal Antarctic snowpack
C. S. Boxe and A. Saiz-Lopez
Earth and Space Science Division, NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA

Abstract. We utilize a multiphase model, CON-AIR (Condense Phase to Air Transfer Model), to show that the photochemistry of nitrate (NO3) in and on ice and snow surfaces, specifically the quasi-liquid layer (QLL), can account for NOx volume fluxes, concentrations, and [NO]/[NO2](γ=[NO]/[NO2]) measured just above the Arctic and coastal Antarctic snowpack. Maximum gas phase NOx volume fluxes, concentrations and γ simulated for spring and summer range from 5.0×104 to 6.4×105 molecules cm−3 s−1, 5.7×108 to 4.8×109 molecules cm−3, and ~0.8 to 2.2, respectively, which are comparable to gas phase NOx volume fluxes, concentrations and γ measured in the field. The model incorporates the appropriate actinic solar spectrum, thereby properly weighting the different rates of photolysis of NO3 and NO2. This is important since the immediate precursor for NO, for example, NO2, absorbs at wavelengths longer than nitrate itself. Finally, one-dimensional model simulations indicate that both gas phase boundary layer NO and NO2 exhibit a negative concentration gradient as a function of height although [NO]/[NO2] are approximately constant. This gradient is primarily attributed to gas phase reactions of NOx with halogens oxides (i.e., as BrO and IO), HOx, and hydrocarbons, such as CH3O2.

Citation: Boxe, C. S. and Saiz-Lopez, A.: Multiphase modeling of nitrate photochemistry in the quasi-liquid layer (QLL): implications for NOx release from the Arctic and coastal Antarctic snowpack, Atmos. Chem. Phys. Discuss., 8, 6009-6034, doi:10.5194/acpd-8-6009-2008, 2008.
 
Search ACPD
Discussion Paper
XML
Citation
Final Revised Paper
Share