Atmos. Chem. Phys. Discuss., 8, 4603-4623, 2008
© Author(s) 2008. This work is distributed
under the Creative Commons Attribution 3.0 License.
Review Status
This discussion paper has been under review for the journal Atmospheric Chemistry and Physics (ACP). Please refer to the corresponding final paper in ACP.
Gap filling and noise reduction of unevenly sampled data by means of the Lomb-Scargle periodogram
K. Hocke and N. Kämpfer
Institute of Applied Physics, University of Bern, Switzerland

Abstract. The Lomb-Scargle periodogram is widely used for the estimation of the power spectral density of unevenly sampled data. A small extension of the algorithm of the Lomb-Scargle periodogram permits the estimation of the phases of the spectral components. The amplitude and phase information is sufficient for the construction of a complex Fourier spectrum. The inverse Fourier transform can be applied to this Fourier spectrum and provides an evenly sampled series (Scargle, 1989). We are testing the proposed reconstruction method by means of artificial time series and real observations of mesospheric ozone, having data gaps and noise. For data gap filling and noise reduction, it is necessary to modify the Fourier spectrum before the inverse Fourier transform is done. The modification can be easily performed by selection of the relevant spectral components which are above a given confidence limit or within a certain frequency range. Examples with time series of lower mesospheric ozone show that the reconstruction method can reproduce steep ozone gradients around sunrise and sunset and superposed planetary wave-like oscillations observed by a ground-based microwave radiometer at Payerne.

Citation: Hocke, K. and Kämpfer, N.: Gap filling and noise reduction of unevenly sampled data by means of the Lomb-Scargle periodogram, Atmos. Chem. Phys. Discuss., 8, 4603-4623, doi:10.5194/acpd-8-4603-2008, 2008.
Search ACPD
Discussion Paper
Final Revised Paper