Atmos. Chem. Phys. Discuss., 8, 3597-3663, 2008
www.atmos-chem-phys-discuss.net/8/3597/2008/
doi:10.5194/acpd-8-3597-2008
© Author(s) 2008. This work is licensed under the
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.
Review Status
This discussion paper has been under review for the journal Atmospheric Chemistry and Physics (ACP). Please refer to the corresponding final paper in ACP.
Validation of ACE-FTS N2O measurements
K. Strong1, M. A. Wolff1, T. E. Kerzenmacher1, K. A. Walker1,2, P. F. Bernath2,3, T. Blumenstock4, C. Boone2, V. Catoire5, M. Coffey6, M. De Mazière7, P. Demoulin8, P. Duchatelet8, E. Dupuy2, J. Hannigan6, M. Höpfner4, N. Glatthor4, D. W. T. Griffith9, J. J. Jin10, N. Jones9, K. Jucks11, H. Kuellmann12, J. Kuttippurath12,13, A. Lambert14, E. Mahieu8, J. C. McConnell10, J. Mellqvist15, S. Mikuteit4, D. P. Murtagh15, J. Notholt12, C. Piccolo16, P. Raspollini17, M. Ridolfii18, C. Robert5, M. Schneider4, O. Schrems19, K. Semeniuk10, C. Senten7, G. P. Stiller4, A. Strandberg15, J. Taylor1, C. Tétard20, M. Toohey1, J. Urban15, T. Warneke12, and S. Wood21
1Department of Physics, University of Toronto, Toronto, Ontario, Canada
2Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada
3Department of Chemistry, University of York, York, UK
4Forschungszentrum Karlsruhe and University of Karlsruhe, Institute for Meteorology and Climate Research (IMK), Karlsruhe, Germany
5Laboratoire de Physique et Chimie de L'Environment CNRS - Université d'Orléans, Orléans, France
6National Center for Atmospheric Research, Boulder, Colorado, USA
7Belgian Institute for Space Aeronomy, Brussels, Belgium
8Institute of Astrophysics and Geophysics, University of Liège, Liège, Belgium
9School of Chemistry, University of Wollongong, Wollongong, Australia
10Department of Earth and Space Science and Engineering, York University, Toronto, Ontario, Canada
11Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts, USA
12Institute for Environmental Physics, University of Bremen, Bremen, Germany
13now at: LMD/CNRS Ecole Polytechnique, Palaiseau Cedex, France
14Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
15Department of Radio and Space Science, Chalmers University of Technology, Gothenburg, Sweden
16Department of Physics, University of Oxford, Oxford, UK
17Institute of Applied Physics "Nello Carrara", National Research Center, Firenze, Italy
18Dipartimento di Chimica Fisica e Inorganica, Università di Bologna, Bologna, Italy
19Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany
20Laboratoire d'Optique Atmosphérique, Université des sciences et technologies de Lille, Villeneuve d'Ascq, France
21National Institute of Water and Atmospheric Research Ltd., Lauder, New Zealand

Abstract. The Atmospheric Chemistry Experiment (ACE), also known as SCISAT, was launched on 12 August 2003, carrying two instruments that measure vertical profiles of atmospheric constituents using the solar occultation technique. One of these instruments, the ACE Fourier Transform Spectrometer (ACE-FTS), is measuring volume mixing ratio (VMR) profiles of nitrous oxide (N2O) from the upper troposphere to the lower mesosphere at a vertical resolution of about 3–4 km. In this study, the quality of the ACE-FTS version 2.2 N2O data is assessed through comparisons with coincident measurements made by other satellite, balloon-borne, aircraft, and ground-based instruments. These consist of vertical profile comparisons with the SMR, MLS, and MIPAS satellite instruments, multiple aircraft flights of ASUR, and single balloon flights of SPIRALE and FIRS-2, and partial column comparisons with a network of ground-based Fourier Transform InfraRed spectrometers (FTIRs). Overall, the quality of the ACE-FTS version 2.2 N2O VMR profiles is good over the entire altitude range from 5 to 60 km. Between 6 and 30 km, the mean absolute differences for the satellite comparisons lie between −42 ppbv and +17 ppbv, with most within ±20 ppbv. This corresponds to relative deviations from the mean that are within ±15%, except for comparisons with MIPAS near 30 km, for which they are as large as 22.5%. Between 18 and 30 km, the mean absolute differences are generally within ±10 ppbv, again excluding the aircraft and balloon comparisons. From 30 to 60 km, the mean absolute differences are within ±4 ppbv, and are mostly between −2 and +1 ppbv. Given the small N2O VMR in this region, the relative deviations from the mean are therefore large at these altitudes, with most suggesting a negative bias in the ACE-FTS data between 30 and 50 km. In the comparisons with the FTIRs, the mean relative differences between the ACE-FTS and FTIR partial columns are within ±6.6% for eleven of the twelve contributing stations. This mean relative difference is negative at ten stations, suggesting a small negative bias in the ACE-FTS partial columns over the altitude regions compared. Excellent correlation (R=0.964) is observed between the ACE-FTS and FTIR partial columns, with a slope of 1.01 and an intercept of −0.20 on the line fitted to the data.

Citation: Strong, K., Wolff, M. A., Kerzenmacher, T. E., Walker, K. A., Bernath, P. F., Blumenstock, T., Boone, C., Catoire, V., Coffey, M., De Mazière, M., Demoulin, P., Duchatelet, P., Dupuy, E., Hannigan, J., Höpfner, M., Glatthor, N., Griffith, D. W. T., Jin, J. J., Jones, N., Jucks, K., Kuellmann, H., Kuttippurath, J., Lambert, A., Mahieu, E., McConnell, J. C., Mellqvist, J., Mikuteit, S., Murtagh, D. P., Notholt, J., Piccolo, C., Raspollini, P., Ridolfii, M., Robert, C., Schneider, M., Schrems, O., Semeniuk, K., Senten, C., Stiller, G. P., Strandberg, A., Taylor, J., Tétard, C., Toohey, M., Urban, J., Warneke, T., and Wood, S.: Validation of ACE-FTS N2O measurements, Atmos. Chem. Phys. Discuss., 8, 3597-3663, doi:10.5194/acpd-8-3597-2008, 2008.
 
Search ACPD
Discussion Paper
    XML
    Citation
    Final Revised Paper
    Share