Atmos. Chem. Phys. Discuss., 8, 20239-20281, 2008
© Author(s) 2008. This work is distributed
under the Creative Commons Attribution 3.0 License.
Review Status
This discussion paper has been under review for the journal Atmospheric Chemistry and Physics (ACP). Please refer to the corresponding final paper in ACP.
Mechanisms controlling surface ozone over East Asia: a multiscale study coupling regional and global chemical transport models
M. Lin1, T. Holloway1, T. Oki2, D. G. Streets3, and A. Richter4
1Center for Sustainability and the Global Environment (SAGE), University of Wisconsin-Madison, Madison, WI, USA
2Institute of Industrial Science, University of Tokyo, Tokyo, Japan
3Argonne National Laboratory, Argonne, IL, USA
4Institute of Environmental Physics, University of Bremen, Bremen, Germany

Abstract. Mechanisms controlling surface ozone (O3) over East Asia are examined using the regional Community Multiscale Air Quality (CMAQ) model at two horizontal scales: 81 km and 27 km. Through sensitivity studies and comparison with recently available satellite data and surface measurements in China and Japan, we find that the O3 budget over East Asia shows complex interactions among photochemical production, regional transport, meteorological conditions, burning of agricultural residues, and global inflows. For example, wintertime surface O3 over northern domain is sensitive to boundary conditions derived from the MOZART (Model for Ozone and Related Tracers) global model, whereas summertime O3 budget is controlled by the competitive processes between photochemical production and monsoonal intrusion of low-O3 marine air masses from tropical Pacific. We find that simulated surface O3 for 2001 does not exhibit the same sharp drop in July and August concentrations that is observed at two mountaintop sites (Tai and Hua) for 2004 and Beijing for 1995–2005. CMAQ sensitivity tests with two widely used photochemical schemes demonstrate that over the industrial areas in East Asia north of 30° N, SAPRC99 produces higher values of mean summertime O3 than CBIV, amounting to a difference of 10 ppb. In addition, analysis of NCEP winds and geopotential heights suggests that southwesterly monsoonal intrusion in central east China is weakened in August 2001 as compared with the climatologically mean for 1980–2005. Further examination of the O3 diurnal cycle at nine Japanese sites shows that boundary layer evolution has an important effect on the vertical mixing of ground-level O3, and error in near surface meteorology might contribute to overprediction of nighttime O3 in urban and rural areas. In conclusion, the uncertainties in simulating cloud activities and convection mixing, Asian monsoon circulation, photochemical production, and nighttime cooling explain why CMAQ with 81 km horizontal scale overpredicts the observed surface O3 in July and August over central east China and central Japan by 5–15 ppb (CBIV) and 15–25 ppb (SAPRC99). The results suggest clear benefits in evaluating atmospheric chemistry over Asia with high resolution regional model.

Citation: Lin, M., Holloway, T., Oki, T., Streets, D. G., and Richter, A.: Mechanisms controlling surface ozone over East Asia: a multiscale study coupling regional and global chemical transport models, Atmos. Chem. Phys. Discuss., 8, 20239-20281, doi:10.5194/acpd-8-20239-2008, 2008.
Search ACPD
Discussion Paper
    Final Revised Paper