Atmos. Chem. Phys. Discuss., 8, 20155-20192, 2008
© Author(s) 2008. This work is distributed
under the Creative Commons Attribution 3.0 License.
Review Status
This discussion paper has been under review for the journal Atmospheric Chemistry and Physics (ACP). Please refer to the corresponding final paper in ACP.
An evaluation of the simulation of the edge of the Antarctic vortex by chemistry-climate models
H. Struthers1, G. E. Bodeker1, J. Austin2, S. Bekki3, I. Cionni1, M. Dameris4, M. A. Giorgetta5, V. Grewe4, F. Lefèvre3, F. Lott6, E. Manzini7,8, T. Peter9, E. Rozanov9,10, and M. Schraner9
1National Institute of Water and Atmospheric Research, Lauder, New Zealand
2Geophysical Fluid Dynamics Laboratory, NOAA, Princeton, New Jersey, USA
3Service d'Aeronomie du CNRS, Institut Pierre-Simon Laplace, Paris, France
4Institut für Physik der Atmosphäre, Deutsches Zentrum für Luft- und Raumfahrt, Oberpfaffenhofen, Wessling, Germany
5Max Planck Institut für Meteorologie, Hamburg, Germany
6Laboratoire de Meteorologie Dynamique, Paris, France
7Istituto Nazionale di Geofisica e Vulcanologia, Italy
8Centro Euro-Mediterraneo per i Cambiamenti Climatici, Bologna, Italy
9Institute for Atmospheric and Climate Science ETH, Zurich, Switzerland
10PMOD/WRC, Dorfstrasse 33, CH-7260, Davos Dorf, Switzerland

Abstract. The dynamical barrier to meridional mixing at the edge of the Antarctic spring stratospheric vortex is examined. Diagnostics are presented which demonstrate the link between the shape of the meridional mixing barrier at the edge of the vortex and the meridional gradients in total column ozone across the vortex edge. Results derived from reanalysis and measurement data sets are compared with equivalent diagnostics from five coupled chemistry-climate models to test how well the models capture the interaction between the dynamical structure of the stratospheric vortex and the chemical processes occurring within the vortex. Results show that the accuracy of the simulation of the dynamical vortex edge varies widely amongst the models studied here. This affects the ability of the models to simulate the large observed meridional gradients in total column ozone. Three of the models in this study simulated the inner edge of the vortex to be more than 7° closer to the pole than observed. This is expected to have important implications for how well these models simulate the extent of severe springtime ozone loss that occurs within the Antarctic vortex.

Citation: Struthers, H., Bodeker, G. E., Austin, J., Bekki, S., Cionni, I., Dameris, M., Giorgetta, M. A., Grewe, V., Lefèvre, F., Lott, F., Manzini, E., Peter, T., Rozanov, E., and Schraner, M.: An evaluation of the simulation of the edge of the Antarctic vortex by chemistry-climate models, Atmos. Chem. Phys. Discuss., 8, 20155-20192, doi:10.5194/acpd-8-20155-2008, 2008.
Search ACPD
Discussion Paper
    Final Revised Paper