Atmos. Chem. Phys. Discuss., 8, 19707-19741, 2008
www.atmos-chem-phys-discuss.net/8/19707/2008/
doi:10.5194/acpd-8-19707-2008
© Author(s) 2008. This work is distributed
under the Creative Commons Attribution 3.0 License.
Review Status
This discussion paper has been under review for the journal Atmospheric Chemistry and Physics (ACP). Please refer to the corresponding final paper in ACP.
Methyl chavicol: characterization of its biogenic emission rate, abundance, and oxidation products in the atmosphere
N. C. Bouvier-Brown1, A. H. Goldstein1, D. R. Worton1, D. M. Matross1, J. B. Gilman2, W. C. Kuster2, D. Welsh-Bon2, C. Warneke2, J. A. de Gouw2, T. M. Cahill3, and R. Holzinger4
1University of California, Berkeley, CA, USA
2NOAA Earth System Research Laboratory and Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA
3Arizona State University, West Campus, Phoenix, AZ, USA
4Utrecht University, Utrecht, The Netherlands

Abstract. We report measurements of ambient atmospheric mixing ratios for methyl chavicol and determine its biogenic emission rate. Methyl chavicol, a biogenic oxygenated aromatic compound, is abundant within and above Blodgett Forest, a ponderosa pine forest in the Sierra Nevada Mountains of California. Methyl chavicol was detected simultaneously by three in-situ instruments – a gas chromatograph with mass spectrometer detector (GC-MS), a proton transfer reaction mass spectrometer (PTR-MS), and a thermal desorption aerosol GC-MS (TAG) – and found to be abundant within and above Blodgett Forest, a ponderosa pine forest in the Sierra Nevada Mountains of California. Methyl chavicol atmospheric mixing ratios are strongly correlated with 2-methyl-3-buten-2-ol (MBO), a light- and temperature-dependent biogenic emission from the ponderosa pine trees at Blodgett Forest. Scaling from this correlation, methyl chavicol emissions account for 4–68% of the carbon mass emitted as MBO in the daytime, depending on the season. From this relationship, we estimate a daytime basal emission rate of 0.72–10.2 μgCg−1h−1, depending on needle age and seasonality. We also present the first observations of its oxidation products (4-methoxybenzaldehyde and 4-methyoxy benzene acetaldehyde) in the ambient atmosphere. Methyl chavicol is a major essential oil component of many plant species. This work suggests that methyl chavicol plays a significant role in the atmospheric chemistry of Blodgett Forest, and potentially other sites, and should be included explicitly in both biogenic volatile organic carbon emission and atmospheric chemistry models.

Citation: Bouvier-Brown, N. C., Goldstein, A. H., Worton, D. R., Matross, D. M., Gilman, J. B., Kuster, W. C., Welsh-Bon, D., Warneke, C., de Gouw, J. A., Cahill, T. M., and Holzinger, R.: Methyl chavicol: characterization of its biogenic emission rate, abundance, and oxidation products in the atmosphere, Atmos. Chem. Phys. Discuss., 8, 19707-19741, doi:10.5194/acpd-8-19707-2008, 2008.
 
Search ACPD
Discussion Paper
    XML
    Citation
    Final Revised Paper
    Share