Atmos. Chem. Phys. Discuss., 8, 19063-19121, 2008
© Author(s) 2008. This work is distributed
under the Creative Commons Attribution 3.0 License.
Review Status
This discussion paper has been under review for the journal Atmospheric Chemistry and Physics (ACP). Please refer to the corresponding final paper in ACP.
A new analytical inversion method for determining regional and global emissions of greenhouse gases: sensitivity studies and application to halocarbons
A. Stohl1, P. Seibert2, J. Arduini3, S. Eckhardt1, P. Fraser4, B. R. Greally5, M. Maione3, S. O'Doherty5, R. G. Prinn6, S. Reimann7, T. Saito8, N. Schmidbauer1, P. G. Simmonds5, M. K. Vollmer7, R. F. Weiss9, and Y. Yokouchi8
1Norwegian Institute for Air Research, Kjeller, Norway
2Institute of Meteorology, University of Natural Resources and Applied Life Sciences, Vienna, Austria
3University of Urbino, Urbino, Italy
4Centre for Australian Weather and Climate Research, CSIRO Marine and Atmospheric Research, Aspendale, Australia
5School of Chemistry, University of Bristol, Bristol, UK
6Center for Global Change Science, Massachusetts Institute of Technology, Cambridge, MA, USA
7Swiss Federal Laboratories for Materials Testing and Research (Empa), Duebendorf, Switzerland
8National Institute for Environmental Studies, Tsukuba, Japan
9Scripps Institute of Oceanography, University of California, San Diego, CA, USA

Abstract. A new analytical inversion method has been developed to determine the regional and global emissions of long-lived atmospheric trace gases. It exploits in situ measurement data from a global network and builds on backward simulations with a Lagrangian particle dispersion model. The emission information is extracted from the observed concentration increases over a baseline that is itself objectively determined by the inversion algorithm. The method was applied to two hydrofluorocarbons (HFC-134a, HFC-152a) and a hydrochlorofluorocarbon (HCFC-22) for the period January 2005 until March 2007. Detailed sensitivity studies with synthetic as well as with real measurement data were done to quantify the influence on the results of the a priori emissions and their uncertainties as well as of the observation and model errors. It was found that the global a posteriori emissions of HFC-134a, HFC-152a and HCFC-22 all increased from 2005 to 2006. Large increases (21%, 16%, 18%, respectively) from 2005 to 2006 were found for China, whereas the emission changes in North America and Europe were modest. For Europe, the a posteriori emissions of HFC-134a and HFC-152a were slightly higher than the a priori emissions reported to the United Nations Framework Convention on Climate Change (UNFCCC). For HCFC-22, the a posteriori emissions for Europe were substantially (by almost a factor 2) higher than the a priori emissions used, which were based on HCFC consumption data reported to the United Nations Environment Programme (UNEP). Combined with the reported strongly decreasing HCFC consumption in Europe, this suggests a substantial time lag between the reported timing of the HCFC-22 consumption and the actual timing of the HCFC-22 emission. Conversely, in China where HCFC consumption is increasing rapidly according to the UNEP data, the a posteriori emissions are only about 40% of the a priori emissions. This reveals a substantial storage of HCFC-22 and potential for future emissions in China. Deficiencies in the station locations of the current global network measuring halocarbons in relation to estimating regional emissions are also discussed in the paper. Applications of the inversion algorithm to other greenhouse gases such as methane, nitrous oxide or carbon dioxide are foreseen for the future.

Citation: Stohl, A., Seibert, P., Arduini, J., Eckhardt, S., Fraser, P., Greally, B. R., Maione, M., O'Doherty, S., Prinn, R. G., Reimann, S., Saito, T., Schmidbauer, N., Simmonds, P. G., Vollmer, M. K., Weiss, R. F., and Yokouchi, Y.: A new analytical inversion method for determining regional and global emissions of greenhouse gases: sensitivity studies and application to halocarbons, Atmos. Chem. Phys. Discuss., 8, 19063-19121, doi:10.5194/acpd-8-19063-2008, 2008.
Search ACPD
Discussion Paper
    Final Revised Paper