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Abstract

The potential for using high-resolution meteorological data from two operational numer-
ical weather analyses (NWA) to diagnose and predict persistent contrail formation is
evaluated using two independent contrail observation databases. Contrail occurrence
statistics derived from surface and satellite observations between April 2004 and June5

2005 are matched to the humidity, vertical velocity, wind shear and atmospheric sta-
bility derived from analyses from the Rapid Update Cycle (RUC) and the Advanced
Regional Prediction System (ARPS) models. The relationships between contrail oc-
currence and the NWA-derived statistics are analyzed to determine under which at-
mospheric conditions persistent contrail formation is favored within NWAs. Humidity is10

the most important factor determining whether contrails are short-lived or persistent,
and persistent contrails are more likely to appear when vertical velocities are positive,
and more likely to spread when the atmosphere is less stable. Although artificial up-
per limits on upper tropospheric humidity within the NWAs prevent a direct quantitative
agreement of model data with contrail formation theory, logistic regression or similar15

statistical methods may improve the prediction of contrail occurrence.

1 Introduction

Contrail-induced cloud cover has the potential to produce significant regional effects
on climate (Minnis et al., 2004). As air traffic increases, the possibility for globally sig-
nificant impacts also rises. Although these impacts, such as radiative forcing, have20

been estimated using general circulation models (GCMs) (Marquart and Mayer, 2002;
Hansen et al., 2005), their magnitudes remain highly uncertain because of the rela-
tively crude ways that contrails are parameterized in those models. One approach to
improve contrail representations and to understand and predict contrail climate effects
better, is to develop models that can more accurately simulate contrail properties at25

smaller scales based on ambient atmospheric variables including temperature, relative
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humidity, and winds and then parameterize those models for inclusion in GCMs. Higher
resolution contrail models could also be useful for aiding contrail mitigation efforts, if
that need arises. To perform such simulations, it is critical to have meteorological data
at high temporal and spatial resolutions over a large domain because air traffic over
a given location changes rapidly throughout the day. Only a few operational numer-5

ical weather analyses (NWA), including the NOAA/ESRL Rapid Update Cycle (RUC;
Benjamin et al., 2004) and the Advanced Regional Prediction System (ARPS; Xue et
al., 2003) produced by the University of Oklahoma Center for Analysis and Prediction
of Storms, currently provide those variables at the resolutions necessary to diagnose
persistent contrail formation over the United States of America.10

The basic thermodynamics of contrail formation from jet exhaust was described by
Schmidt/Appleman theory (Schumann, 1996), which has been modified more recently
to account for the effects of jet aircraft efficiency. This theory describes the tempera-
ture and pressure conditions necessary to allow the isobaric mixing of the hot, moist
exhaust gases with the cold ambient air to form a contrail. The formation of persistent15

contrails occurs when the relative humidity with respect to ice (RHI) reaches or ex-
ceeds 100%. A review of the historical development of the theory and its experimental
verification is given in Schumann (1996). NWAs, however, often underestimate upper
tropospheric relative humidity (UTH) due to large dry biases in the balloon soundings
used to construct the analyses and to internal adjustments made to meet the model’s20

physical constraints (Minnis et al., 2005b). Although this dry bias prevents a straightfor-
ward determination of persistent contrail formation via Schmidt/Appleman theory, such
a dry bias might be correctable if the numerical weather humidity data can be shown
to be consistent with the appearance or non-appearance of contrails. Thus, one out-
standing problem that must be addressed before a realistic simulation of contrails can25

be achieved is to determine how accurately the meteorological data provided by the
numerical weather analyses and forecasts diagnose contrail formation conditions.

This paper evaluates the potential for using the RUC and ARPS models to diag-
nose and predict persistent contrail formation conditions using a variety of datasets.
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To achieve that goal, we match several months of contrail occurrence statistics derived
from satellite and surface observations to the NWA-derived humidity, vertical velocity,
wind shear and atmospheric stability. The relationships between contrail occurrence
and the NWA-derived statistics are then analyzed to determine under which atmo-
spheric conditions the formation of persistent contrails is favored.5

2 Data and methodology

Two independent types of contrail observations are used to evaluate the NWA models.
Satellite data can reveal contrails above lower level clouds that are missed by surface
observers, but are biased, on average, toward lower occurrence rates. Surface ob-
servers can provide more reliable contrail observations and detect some of the thinner10

contrails missed by the satellite.

2.1 Surface data

The Global Learning and Observations to Benefit the Environment (GLOBE) program
collects observations of cloud occurrence and coverage throughout the contiguous
United States (CONUS) from primary and secondary schools across the country. (See15

www.globe.gov for more information about the GLOBE program.) In May 2003, GLOBE
initiated a contrail observation protocol to measure and classify contrail observations.
A primary goal of the GLOBE program is to use detailed written protocols to enable
students to provide scientifically valuable measurements of environmental parameters
(Brooks and Mims, 2001). Over 18 500 observations were reported over the region20

between 1 April 2004 and 27 June 2005. The observations usually include contrail cov-
erage, contrail number, cloud coverage, cloud type and a classification of contrails into
three categories, short-lived (SHRT), non-spreading persistent contrails (NSPR), and
spreading persistent contrails (SPRD). The contrail categories are defined as follows:
short-lived contrails are contrails that dissipate as the aircraft moves across the sky.25
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Persistent contrails are contrails that remain in the sky after the aircraft has flown out of
view of the observer. Spreading contrails are defined as persistent contrails wider than
the width of a finger held at arm’s length. This width corresponds to a contrail that is
2◦s of arc wide, or at least 350 m wide (based on a contrail altitude of 10 km) (O’Shea,
1991), which is the minimum width expected to be detectable in NOAA’s Advanced Very5

High Resolution Radiometer (AVHRR) imagery. The cloud coverage observations are
reported within six categories based on total coverage of non-contrail cloudiness: no
clouds (0% coverage), clear (1–9% coverage), isolated (10–24% coverage), scattered
(25–49% coverage), broken (50–89% coverage) and overcast (90–100% coverage).

The GLOBE contrail dataset contains observations from 417 schools. The schools10

are mostly located in highly populated regions with substantial air traffic (Fig. 1). Only
123 of the schools (29.5%) reported more than 30 observations during the 15-month
time period, but those schools reported 16 008 observations, 86.5% of the total. Nearly
all schools reported only one observation/day. Approximately 92% of all observations
were between 14:30 and 20:30 UTC, and nearly 58% of the total were between 16:3015

and 18:30 UTC.
To test the quality of the surface-based observations, the set of 11 schools that had

at least 50 observations taken under mostly clear skies (non-contrail cloud coverage
less than 25%) were chosen for closer study. Because these schools provided multi-
ple observations throughout the period, we expect that these locations would be more20

likely to provide high quality contrail observations among the GLOBE participants than
locations with few contrail reports. Figure 1 shows the location of the 11 schools as
a large black plus (+) sign. All schools with the exception of Box Elder, Montana are
located in regions with substantial commercial air traffic during the typical observa-
tion period. From these schools, a uniformly random sample of 379 GLOBE contrail25

observations were compared with observations of contrail occurrence determined by
visual inspection of loops of nearly coincident, multi-spectral Geostationary Opera-
tional Environmental Satellite (GOES) imagery (Minnis et al., 2008). The comparison
between surface and satellite observations is summarized in Table 1, where the ob-
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servations are sorted into four categories. Category A indicates that both the surface
and satellite observations detected contrails, while category D shows the cases where
both methods detected no contrails. Category B includes the occasions when contrail
occurrence was detected by satellite but not reported by the student observers, and
category C include the observations when the surface observer reported persistent5

contrails while none were apparent in the satellite imagery. The surface and satellite
observations matched nearly 75% of the time (categories A and D), while 18% of the
observations were in category C, and the remaining 7% of observations were in cate-
gory B. As a test of the integrity of the surface and satellite observations, the maximum
relative humidity with respect to ice (RHI) within the upper troposphere (between 15010

and 400 hPa) was determined from the ARPS analyses for each observation, and the
mean for each observation category is presented in Table 1. The mean ARPS RHI for
category A observations was 88.2%, while the mean ARPS RHI was only 48.3% when
both observations showed no contrails (category D). It is important to note some dif-
ferences between surface-based and satellite-based observations. Surface observers15

often miss contrails forming above lower cloudiness (although by choosing only mostly
clear observations, this type of error should be minimal here), misidentify linear cloud
features as contrails (or contrails as cloud streaks), or record the observation incor-
rectly in the contrail report. Cloud cover and the misidentification of cloud streets as
contrails also hamper the visual detection of persistent contrails in the GOES satellite20

imagery loops. Surface observers, however, can detect much narrower and probably
optically thinner contrails than those seen in the 4-km resolution GOES satellite im-
agery. Some of the cases where observers reported contrail coverage not seen in the
satellite (category C) may have been due to the observation of non-spreading persis-
tent contrails that could not be detected in the GOES imagery loops. In addition, over25

75% of the category C reports occurred at only three schools. Due to an ambiguity
in the GLOBE contrail reporting form, some schools may have reported short-lived
contrails in the contrail coverage fractions, leading to the large number of category C
reports for those locations. The lack of any substantial difference in the ARPS RHI
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between categories C and D at the three schools supports the possibility of this type
of error.

2.2 Satellite data

Multi-spectral data from the AVHRR onboard the NOAA-16 satellite were used to iden-
tify linear contrails (Lee, 1989) following the contrail detection algorithm of Mannstein et5

al. (1999) as applied by Palikonda et al. (2005). The Mannstein et al. (1999) algorithm
uses a combination of channel 4 (10.8-µm) and channel 5 (12.0-µm) radiances to iden-
tify contrails. Radiance data were collected from 366 mid-afternoon overpasses of the
satellite between April 16, 2004 and June 27, 2005 within a 4×6◦ grid box over eastern
Ohio/western Pennsylvania/West Virginia (38◦–42◦ N; 78◦–84◦ W), an area selected be-10

cause of its heavy commercial air traffic (Garber et al., 2005). During the observation
period, contrails were detected within 43.3% of all available grid boxes, while cirrus
was detected within 47.7% of the available grid boxes. Minnis et al. (2005a) and Pa-
likonda et al. (2005) found that the technique tends to overestimate contrail coverage
by 20–40% mainly because of natural cirrus that appears much like contrails.15

2.3 Meteorological data

Meteorological data from the high-resolution, hourly RUC-20 analyses and ARPS anal-
yses and forecasts provide information on temperature, humidity, pressure, and vertical
velocity that is matched with each of the surface and satellite observations. The RUC-
20 data have a resolution of 20 km, while the ARPS data were obtained from the 27-km20

resolution, hourly CONUS domain analyses. The ARPS forecasts are 1-day (16–20 h),
2-day (40–44 h), and 3-day (64–68 h) forecasts from 16:00 UTC to 20:00 UTC.

To match the surface and meteorological data, data from the RUC analyses closest
in time with the contrail observations are bilinearly interpolated to the location of each
observation. An observation is not used if the time difference between the observation25

and the RUC analysis was greater than 1 h. The level between 400 and 150 hPa with

18391

the maximum relative humidity with respect to ice (RHImax) is determined from all levels
(spaced at every 25 hPa) that have a temperature less than or equal to −40◦C. The
temperature constraint was added to eliminate areas where the atmosphere is likely to
be too warm to form contrails (Appleman, 1953). Although the observed contrails may
have formed at other levels, this level was chosen as the most likely level for contrail5

formation, and to provide a consistent representation of humidity at typical commercial
aircraft flight levels. The probability distribution function of the level of RHImax is roughly
Gaussian in shape for both the RUC and ARPS analyses with a maximum around
250 hPa.

All other meteorological data (including vertical velocity) are selected from this level10

for comparison with the surface observations of contrail occurrence. The vertical shear
of the horizontal wind and the temperature lapse rate for the 25-hPa layer below the
level of maximum RHI are also computed. The vertical velocity, the lapse rate (a mea-
sure of the atmospheric stability) and the vertical shear are expected to influence the
spreading rate of persistent contrails (Jensen et al., 1998).15

A similar procedure is used to match the ARPS upper tropospheric data with the
surface-based contrail observations. The RHI is computed from the ARPS fields of
potential temperature and specific humidity at the 25-hPa intervals to determine the
level of maximum upper tropospheric humidity.

To compare NWA output with the satellite observations, contrail and cirrus occur-20

rence statistics are derived for each 1×1◦ grid box within the 4×6◦ observation domain.
Contrail occurrence is determined for each grid box from the automated linear con-
trail detection algorithm while cirrus occurrence is determined by visual inspection of
infrared imagery from each satellite overpass. Meteorological data (including RHI, ver-
tical velocity, wind shear and atmospheric lapse rate) from the RUC and ARPS are then25

linearly interpolated to the center of each 1×1◦ box within the domain to correlate the
meteorological data with the occurrence of contrails and cirrus. Due to gaps in avail-
able meteorological data, and to the satellite viewing angle requirements for the contrail
detection method, only 5400 grid box matches were available during the observation
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period.

3 Results

3.1 Comparison of NWA output with surface observations

Contrail coverage was reported in 27.0% of a total of 18 504 surface observations. At
least one persistent (either spreading or non-spreading) contrail was reported in 17.0%5

of the observations. This frequency is slightly higher than Minnis et al. (1993) for the
highest period of contrail occurrence, 1993–1994: 15.2% for unobscured skies. Most
of the GLOBE data (80.1%) were taken during the non-summer months when contrail
coverage is greater. Similar to the US Air Force observers in the Minnis et al. study, the
highest contrail frequencies were reported from October through April (18.8%), while10

the lowest contrail frequencies were reported from June through September (12.0%).
Most of the persistent contrail observations (71.3%) were made in partly cloudy skies
(either clear skies, or skies with isolated or scattered cloudiness). Table 2 shows the
mean value of RHImax calculated from the collocated RUC and ARPS analyses for
several cloudiness categories.15

The increase in RHImax with increasing cloud coverage category suggests that the
GLOBE cloud and contrail observations were consistent with the numerical weather
output, as the largest RHImax values occurred when overcast skies were reported. Al-
though most persistent contrails were observed under partly cloudy conditions, the
RHIs computed by both numerical weather analyses were higher when persistent con-20

trails formed than under usual partly cloudy conditions. Table 2 shows that persistent
contrails form as expected in high humidity environments, although a comparison be-
tween the mean RHImax for persistent contrails (the category NSPR+SPRD) with the
minimum RHI required by the Schmidt/Appleman criteria (100%) demonstrates that
both models show a dry bias of at least 15 to 38% when compared to contrail for-25

mation theory. The contrail observations with the highest average RHImax conditions
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occurred when persistent spreading contrails were present. The dry bias is expected
as both models limit upper tropospheric moisture. Even though ice supersaturation
is common in the upper troposphere and has been measured to be as high as 150%
(e.g., Miloshevich et al., 2001), the RUC-20 analyses do not allow ice supersaturation
to exceed 100% by more than a few percent at pressures below 300 hPa. The RUC-5

20 mean value of RHI for overcast clouds is ∼15% less than that found by Minnis et
al. (2005b) when comparing RUC-2 RHI with clouds having temperatures below −40◦C.
This difference reflects the change in upper tropospheric humidity processing scheme
between RUC-2 and RUC-20 to limit RHI artificially in the RUC-20. The ARPS analy-
ses allow some ice supersaturation, although RHI values rarely exceed 112%. No ice10

supersaturation occurs in the ARPS forecasts; the maximum RHI is only 100 percent.
This difference between the analyses and forecasts could account for the marked drop
in the RHI values in the forecasts shown in Table 2.

Table 3 shows the mean values of vertical velocity (vv), vertical wind shear (vs), and
atmospheric lapse rate (lr) from the RUC and ARPS collocated with the surface contrail15

observations from GLOBE. Although most persistent contrails were reported under
partly cloudy conditions, the RUC and ARPS vertical velocities were larger than the
mean vertical velocities reported under such cloudiness conditions. When persistent
contrails were present, the vertical shear of the horizontal wind was similar to the shear
analyzed under typical partly cloudy conditions. The temperature lapse rate at the20

level of maximum RHI indicates the stability of the atmosphere where contrails form,
and helps determine the depth of persistent contrails. Contrails will tend to be thicker
vertically as the magnitude of the lapse rate increases (i.e., the atmosphere becomes
less stable). Table 3 shows that the largest mean lapse rates occur in both the RUC
and ARPS analyses when spreading persistent contrails are reported.25

3.2 Comparison of NWA output with satellite observations

Figure 2 presents normalized probability density histograms of RHI computed using
the 1×1◦ grid boxes from the satellite overpasses. In Fig. 2a, RHI values from the RUC
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and ARPS models are separated into grid boxes containing contrails (dashed lines)
and boxes with no contrails (solid lines). The contrail distributions are skewed toward
higher RHI values, but the “no contrail” distributions are relatively uniform. The distribu-
tions in Fig. 2b, which are separated by the presence or absence of cirrus, show a clear
distinction in the humidity between the cirrus and non-cirrus grid boxes. Figure 2b sug-5

gests that the NWAs may be better at predicting cirrus than contrail occurrence. The
demarcation seen in Fig. 2b suggests that for the ARPS analyses, a simple threshold
near 75% RHI would accurately predict cirrus occurrences while for the RUC analyses
the best threshold would be between 60 and 65%.

To assess the skill level of such an RHI-based forecast, three measures of fore-10

casting skill were computed. The skill scores were constructed using a simple 2-by-2
forecast matrix with the following outcomes: a is the number of cases where the RHI is
at or above the threshold and cloud is observed in the grid box (hits); b is the number of
cases where RHI is at or above the threshold but no cloud is observed (false alarms);
c is the number of cases where RHI is below the threshold but a cloud is observed15

(misses); and d is the number of cases where RHI is below the threshold and no cloud
is observed (correct rejections). The three skill measures are:

Hit rate. The hit rate is (a+d )/(a+b+c+d ), and represents the percentage of fore-
casts in which the method correctly predicted the observed event.

Bias ratio. The bias ratio is computed from (a+b)/(a+c), and measures the tendency20

of a forecast method to over- or under-forecast the occurrence of contrails or cirrus. A
perfectly unbiased method would have a bias ratio of 1.00, while values below unity
indicate that the cirrus/contrail occurrence is under-forecasted, and values above unity
indicate that cirrus/contrail occurrence is over-forecasted.

Heidke Skill Score (HSS). The HSS is calculated as HSS=2(ad–bc)/(a+c)(c+d )–25

(a+b)(b+d ) (see Wilks, 1995). This measure of forecasting skill compares the hit
rate of the forecast method with the hit rate achieved with a random forecast. Perfect
forecasts have an HSS of one, forecasts equal in skill to the random forecast have an
HSS of zero, while a negative HSS indicates that the forecasts are less skillful than
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random forecasts.
Table 4 shows the hit rate, bias ratio and HSS computed for the best-case RHI

threshold chosen for each NWP analysis/forecast for both cirrus and contrail occur-
rence. The optimal RHI for each case was determined by finding the particular RHI
threshold that maximizes HSS. The HSS-optimized thresholds also tended to have the5

highest hit rates, and the bias ratios usually were close to 1.00. As expected, the cir-
rus occurrence forecasts were much better than the contrail occurrence forecasts for
both analyses. Because cirrus and contrails can only form in supersaturated regions,
the optimal RHI should be at least 100%. Thus, both the RUC and the ARPS have
a dry bias. Some dry bias is expected because the model analyses produce a grid10

average relative humidity such that the model would only register 100% if the entire
grid box were covered in clouds. The difference in the skill scores between the RUC
and ARPS analyses is not as large as the difference in the cirrus skill scores compared
to the contrail skill scores. The higher cirrus skill scores confirm that the model analy-
ses do much better representing moisture where cirrus appears than where persistent15

contrails appear.

4 Discussion and conclusions

The results in Table 2 confirm that relative humidity is the most important factor deter-
mining whether contrails are short-lived or persistent. Although most surface observa-
tions of contrails occur in clear or partly cloudy skies, the UTH observed when persis-20

tent contrails form is typically much higher than the average humidities observed under
partly cloudy conditions, or when only short-lived contrails are reported. The RHI val-
ues reported when spreading persistent contrails are observed are slightly larger than
when non-spreading persistent contrails are reported (at least in the ARPS analyses),
suggesting that humidity is one factor influencing the formation of spreading contrails.25

Other possible factors, including vertical velocity and atmospheric lapse rate appear
to influence where persistent contrails may form. Persistent contrails are more likely to

18396



appear when the vertical velocities are positive than when negative, and the contrails
may be more likely to spread when the atmosphere becomes less stable. Although
vertical shear is the primary mechanism responsible for spreading contrails, the mag-
nitude of the shear appears to be less important in determining whether contrails will
spread than the other factors. It is likely that sufficient UTH and atmospheric instability5

is necessary to make contrails deep enough and long-lived so that the wind shear can
spread the clouds. Another result of this study is that simple humidity thresholds in the
numerical weather analyses may be appropriate for determining where cirrus is likely to
form. The prognosis of contrails from relative humidity analyses is complicated by the
occasional lack of contrail formation when UTH is high. This may be the result of cirrus10

clouds competing with contrails for atmospheric moisture and obscuring the detection
of any contrails that formed. It might also be due to errors in the UTH diagnosed by the
models, or simply to the lack of jet air traffic in the region. Other factors that can affect
the determination of contrails or cirrus from NWAs are input data such as satellite radi-
ances or cloud-top heights. Inclusion of those parameters into the numerical weather15

analyses can, in many instances, force the model to increase or decrease the UTH to
match the observations resulting in the relatively good diagnoses of cirrus-related pa-
rameters seen here. However, such data are available only in an analysis model and
would only contribute to the diagnoses in a forecast model indirectly by improving the
forecast. A comparison of the forecast skill statistics in Table 4 shows that the simple20

RHI threshold model loses much forecast skill in predicting cirrus occurrence after 24 h.
Because the intent of this paper is to demonstrate the overall applicability of NWA

data to predict contrail occurrence, no consideration is given here to the spatial or
seasonal variations in these atmospheric variables. More insight may be gained in
future studies by looking at spatial or seasonal differences in the contrail occurrence25

data.
Although the meteorological data within the RUC and ARPS analyses are quali-

tatively consistent with contrail formation theory, direct quantitative agreement with
Schmidt/Appleman theory is not currently possible due to the artificial upper limits
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placed on UTH in both analyses. This arbitrary cutoff of supersaturation removes
information about the humidity field that prevents a straightforward application of
Schmidt/Appleman theory, which requires accurate temperature and relative humidity
data. The results of Table 4 demonstrate that forecast models based on RUC/ARPS hu-
midity alone have limited skill in diagnosing contrail occurrence. Despite these results,5

the humidity data do show some consistency with persistent contrail occurrence, and it
is likely that contrail forecasts could be improved by using logistic regression (Jackson
et al., 2001; Travis et al., 1997) or other statistical methods that can include several
meteorological parameters in the prognosis. We plan such a multi-variable analysis in
an ongoing study. However, because upper tropospheric humidity is the main factor10

determining contrail formation, contrail forecasts will remain somewhat limited in ac-
curacy until accurate assimilation of ice supersaturation is incorporated into numerical
weather analyses and models. It is encouraging that the latest versions of both the
RUC and the ARPS at the time of this writing are now producing significantly greater
levels of ice supersaturation than were available for comparisons with the observations15

used in this study.
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Benjamin, S. G., Dévényi, D., Weygandt, S. S., Brundage, K. J., Brown, J. M., Grell, G. A., Kim,
D., Schwartz, B. E., Smirnova, T. G., Smith, T. L., and Manikin, G. S.: An hourly assimilation–
forecast cycle: The RUC, Mon. Weather Rev., 132, 495–518, 2004.25

Brooks, D. R. and Mims, III, F. M.: Development of an inexpensive handheld LED-based Sun
photometer for the GLOBE program, J. Geophys. Res., 106(D5), 4733–4740, 2001.

18398



Garber, D., Minnis, P., and Costulis, P. K.: A commercial flight track database for upper tro-
pospheric aircraft emission studies over the USA and southern Canada, Meteorol. Z., 14,
445–452, 2005.

Hansen, J., Sato, M., Ruedy, R., Nazarenko, L., Lacis, A., Schmidt, G. A., Russell, G., Aleinov,
I., Bauer, M., Bauer, S., Bell, N., Cairns, B., Canuto, V., Chandler, M., Cheng, Y., Del Genio,5

A., Faluvegi, G., Fleming, G., Friend, A., Hall, T., Jackman, C., Kelley, M., Kiang, N., Koch,
D., Lean, J., Lerner, J., Lo. K., Menon, S., Miller, R., Minnis, P., Novakov, T., Oinas, V.,
Perlwitz, Ja., Perlwitz, Ju., Rind, D., Romanou, A., Shindell, D., Stone, P., Sun, S., Tausnev,
N., Thresher, D., Wielicki, B., Wong, T., Yao, M., and Zhang, S.: Efficacy of climate forcings,
J. Geophys. Res., 110, D18104, doi:10.1029/2005JD005776, 2005.10

Jackson, A., Newton, B., Hahn, D., and Bussey, A.: Statistical contrail forecasting, J. Appl.
Meteorol., 40, 269–279, 2001.

Jensen, E. J., Ackerman, A. S., Stevens, D. E., Toon, O. B., and Minnis, P.: Spreading and
growth of contrails in a sheared environment, J. Geophys. Res., 103, 31 557–31 567, 1998.

Lee, T. F.: Jet contrail identification using the AVHRR infrared split window, J. Appl. Meteorol.,15

28, 993–995, 1989.
Mannstein, H., Meyer, R., and Wendling, P.: Operational detection of contrails from NOAA-

AVHRR data, Intl. J. Remote Sens., 20, 1641–1660, 1999.
Marquart, S. and Mayer, B.: Towards a reliable GCM estimation of contrail radiative forcing,

Geophys. Res. Lett., 29(8), 119, doi:10.1029/2001GL014075, 2002.20
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Table 1. Mean of the maximum upper tropospheric relative humidities (in percent) with respect
to ice (RHI) collocated with 11 GLOBE surface observation locations under mostly clear skies
between April 2004 and June 2005 (number of observations in parentheses). Observations are
sorted into four categories based on detection of contrail occurrence by surface and satellite.

Location Lat Lon A: Surface (Y) B: Surface (N) C: Surface (Y) D: Surface(N)
Satellite (Y) Satellite (Y) Satellite (N) Satellite (N)

Mobile, AL 30.70 N–88.05 W 86.91 (8) 84.09 (5) 54.10 (3) 42.96 (48)

Fayetteville, NC 35.05 N–78.59 W 77.47 (8) 79.31 (5) 81.00 (4) 38,94 (18)

Norfork, AR 36.20 N–92.27 W 76.35 (6) – (0) 40.65 (22) 38.09 (25)

Mountain Home, AR 36.24 N–92.32 W 73.43 (6) 74.01 (2) 38.03 (19) 39.94 (17)

Hartland, ME 44.88 N–69.45 W 86.58 (4) 80.42 (1) 63.16 (2) 46.01 (13)

Placerville, CA 38.78 N–120.89 W 96.20 (18) 64.38 (3) 31.44 (3) 37.80 (11)

Tucson, AZ 32.17 N–110.44 W – (0) –(0) 39.15 (2) 43.64 (21)

Waynesboro, PA 39.75 N–77.57 W 96.40 (2) –(0) 25.57 (1) 53.32 (15)

Box Elder, MT 48.29 N–109.87 W 84.29 (1) 74.41 (3) 70.58 (2) 86.86 (10)

Whitehall, MI 43.38 N–86.32 W 92.99 (5) 94.52 (6) –(0) 70.59 (24)

Washington, D.C. 38.56 N–77.01 W 94.96 (12) 94.92 (2) 57.17 (12) 54.36 (10)

Total 88.19 (70) 82.51 (27) 46.50 (70) 48.26 (212)
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Table 2. Mean and standard deviation (in parentheses) of the maximum upper tropospheric
relative humidities (in percent) with respect to ice (RHI) from RUC and ARPS analyses and from
ARPS 1-day, 2-day and 3-day forecasts collocated with GLOBE surface observations between
1 April 2004 and 27 June 2005. The number of GLOBE observations that were matched to the
RUC (R obs.) and ARPS (A Obs.) analyses for each cloudiness category are also included.

R Obs. RUC A Obs. ARPS 1-day 2-day 3-day

No cloud 1783 33.78 (21.4) 1355 51.83 (22.2) 47.61 (21.8) 57.14 (22.4) 59.54 (23.9)

Clear 2661 46.32 (25.0) 2178 65.73 (26.1) 60.18 (25.4) 67.63 (23.9) 68.20 (23.8)

SHRT only 1302 47.03 (24.8) 1116 67.08 (23.4) 61.78 (24.7) 69.50 (22.1) 70.40 (22.7)

Isolated 2017 51.72 (26.2) 1655 71.32 (25.6) 65.25 (25.3) 70.62 (24.3) 70.91 (24.3)

Scattered 3168 53.87 (26.6) 2624 72.17 (28.2) 66.25 (26.5) 70.90 (24.6) 70.35 (24.6)

Cirrus 4472 57.63 (25.7) 3676 78.03 (25.2) 71.62 (24.2) 74.79 (22.4) 73.73 (23.0)

Broken 3433 59.03 (27.0) 2902 77.76 (27.4) 70.61 (26.9) 72.99 (24.9) 72.20 (25.4)

NSPR only 892 62.18 (24.6) 735 82.57 (24.6) 75.88 (20.9) 77.80 (20.4) 75.45 (23.1)

NSPR + SPRD 2294 62.27 (24.9) 1895 84.66 (22.4) 77.58 (20.8) 79.13 (20.2) 77.19 (22.0)

SPRD only 1001 62.08 (25.4) 834 85.59 (22.7) 77.54 (21.1) 79.35 (20.7) 77.79 (21.3)

Overcast 5060 65.85 (27.5) 4247 85.63 (27.5) 74.43 (26.8) 73.94 (26.4) 71.48 (27.1)
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Table 3. Mean vertical velocity in cm s−1 (vv), mean vertical shear of the horizontal wind in
m s−1 km−1 (vs), and mean lapse rate in K km−1 (lr) computed from RUC and ARPS analyses
collocated with GLOBE surface observations between 1 April 2004 and 27 June 2005.

vv (cm s−1) vs (m s−1 km−1) lr (K km−1)
RUC ARPS RUC ARPS RUC ARPS

No cloud −1.16 −0.66 3.94 3.42 −6.77 −6.00

Clear −0.71 −0.53 4.10 3.66 −7.01 −6.43

SHRT only −0.56 −0.57 3.84 3.55 −7.11 −6.56

Isolated −0.18 −0.18 4.11 3.57 −7.12 −6.82

Scattered +0.04 −0.31 4.11 3.60 −7.07 −6.85

Cirrus +0.11 −0.15 4.12 3.73 −7.24 −7.02

Broken +0.81 +0.20 4.22 3.79 −7.14 −7.06

NSPR only +0.50 +0.05 4.22 3.70 −7.33 −7.07

NSPR+ SPRD +0.37 +0.10 4.18 3.66 −7.35 −7.18

SPRD only +0.31 +0.19 4.14 3.66 −7.34 −7.28

Overcast +2.05 +1.04 4.57 4.22 −7.24 −7.19
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Table 4. Optimum RHI-based ARPS and RUC forecast skill statistics determined from NOAA-
16 measurements of cirrus and contrail occurrence for OH/PA/WV region from 366 afternoon
overpasses from 16 April 2004 to 27 June 2005.

Cirrus Optimum RHI Hit Rate Bias Ratio HSS

ARPS 78 0.779 0.967 0.556

RUC 62 0.756 1.004 0.512

ARPS 1-day forecast 76 0.732 0.960 0.461

ARPS 2-day forecast 76 0.632 1.092 0.265

ARPS 3-day forecast 80 0.552 0.933 0.097

Contrail

ARPS 74 0.614 1.159 0.228

RUC 62 0.589 1.106 0.173

ARPS 1-day forecast 70 0.613 1.146 0.227

ARPS 2-day forecast 77 0.572 1.123 0.143

ARPS 3-day forecast 80 0.545 0.985 0.075
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Fig. 1. Distribution of hourly mean cumulative flight lengths for all commercial flights with
altitudes between 7 and 15 km for each 1×1◦ grid box for the time period between 15 and
20:00 UTC during November 2004 (see Garber et al., 2005). The crosses and plus signs in-
dicate all GLOBE locations reporting contrail observations between April 2004 and June 2005.
The small white crosses represent locations with 30 or fewer total observations, while the larger
white crosses are locations with more than 30 total observations. The black plus signs denote
locations with more than 50 observations taken during mostly clear (cloud coverage less than
25%) conditions.
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Fig. 2a. Normalized probability distributions of relative humidity with respect to ice (RHI) com-
puted from RUC and ARPS analyses collocated with NOAA-16 observations of the occurrence
or non-occurrence of persistent contrails between 1 April 2004 and 27 June 2005.
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Fig. 2b. Normalized probability distributions of relative humidity with respect to ice (RHI) com-
puted from RUC and ARPS analyses collocated with NOAA-16 observations of the occurrence
or non-occurrence of cirrus between 1 April 2004 and 27 June 2005.
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