Atmos. Chem. Phys. Discuss., 8, 1367-1413, 2008
© Author(s) 2008. This work is licensed under the
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.
Review Status
This discussion paper has been under review for the journal Atmospheric Chemistry and Physics (ACP). Please refer to the corresponding final paper in ACP.
The Tropical Tropopause Layer 1960–2100
A. Gettelman1, T. Birner2, V. Eyring3, H. Akiyoshi4, D. A. Plummer5, M. Dameris3, S. Bekki6, F. Lefèvre6, F. Lott7, C. Brühl8, K. Shibata9, E. Rozanov10, E. Mancini11, G. Pitari11, H. Struthers12, W. Tian13, and D. E. Kinnison1
1National Center for Atmospheric Research, Boulder, CO, USA
2University of Toronto, Toronto, ON, Canada
3Deutsches Zentrum für Luft- und Raumfahrt, Oberpfaffenhofen, Germany
4National Institute for Environmental Studies, Tsukuba, Japan
5Canadian Centre for Climate Modeling and Analysis, Victoria,BC, Canada
6Université Pierre and Marie Curie, Service d'Aeronomie, Paris, France
7L'Institut Pierre-Simon Laplace, Ecole Normale Superieur, Paris, France
8Max Planck Institut für Chemie, Mainz, Germany
9Meteorological Research Institute, Tsukuba, Japan
10Physikalisch-Meteorologisches Observatorium Davos, Davos, Switzerland
11Universita degli Studi de L'Aquila, L'Aquila, Italy
12National Institute for Water and Atmosphere, New Zealand
13University of Leeds, Leeds, UK

Abstract. The representation of the Tropical Tropopause Layer in 13 different Chemistry Climate Models designed to represent the stratosphere is analyzed. Simulations for 1960–present and 1980–2100 are analyzed and compared to reanalysis model output. Results indicate that the models are able to reproduce the basic structure of the TTL. There is a large spread in cold point tropopause temperatures that may be linked to variation in TTL ozone values. The models are generally able to reproduce historical trends in tropopause pressure obtained from reanalysis products. Simulated historical trends in cold point tropopause temperatures and in the meridional extent of the TTL are not consistent across models. The pressure of both the tropical tropopause and the level of main convective outflow appear to be decreasing (increasing altitude) in historical runs. Similar trends are seen in the future. Models consistently predict decreasing tropopause and convective outflow pressure, by several hPa/decade. Tropical cold point temperatures increase by 0.2 K/decade. This indicates that tropospheric warming dominates stratospheric cooling at the tropical tropopause. Stratospheric water vapor at 100 hPa increases by up to 0.5–1 ppmv by 2100. This is less than implied directly by the temperature and methane increases, highlighting the correlation of tropopause temperatures with stratospheric water vapor, but also the complex nature of TTL transport.

Citation: Gettelman, A., Birner, T., Eyring, V., Akiyoshi, H., Plummer, D. A., Dameris, M., Bekki, S., Lefèvre, F., Lott, F., Brühl, C., Shibata, K., Rozanov, E., Mancini, E., Pitari, G., Struthers, H., Tian, W., and Kinnison, D. E.: The Tropical Tropopause Layer 1960–2100, Atmos. Chem. Phys. Discuss., 8, 1367-1413, doi:10.5194/acpd-8-1367-2008, 2008.
Search ACPD
Discussion Paper
    Final Revised Paper