Atmos. Chem. Phys. Discuss., 8, 13043-13062, 2008
www.atmos-chem-phys-discuss.net/8/13043/2008/
doi:10.5194/acpd-8-13043-2008
© Author(s) 2008. This work is distributed
under the Creative Commons Attribution 3.0 License.
Review Status
This discussion paper has been under review for the journal Atmospheric Chemistry and Physics (ACP). Please refer to the corresponding final paper in ACP.
Clear sky UV simulations in the 21st century based on ozone and temperature projections from Chemistry-Climate Models
K. Tourpali1, A. F. Bais1, A. Kazantzidis1, C. S. Zerefos2, H. Akiyoshi3, J. Austin4, C. Brühl5, N. Butchart6, M. P. Chipperfield7, M. Dameris8, M. Deushi9, V. Eyring8, M. A. Giorgetta10, D. E. Kinnison11, E. Mancini12, D. R. Marsh11, T. Nagashima3, G. Pitari12, D. A. Plummer13, E. Rozanov14,15, K. Shibata9, and W. Tian7
1Laboratory of Atmospheric Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
2Laboratory of Climatology, Faculty of Geology, University of Athens, Athens, Greece
3National Institute for Environmental Studies, Tsukuba, Japan
4Geophysical Fluid Dynamics Laboratory, NOAA, Princeton, NJ, USA
5Max-Planck-Institut für Chemie, Mainz, Germany
6Met Office Climate Research Division, Exeter, UK
7Institute for Atmospheric Science, University of Leeds, Leeds, UK
8Deutsches Zentrum für Luft- und Raumfahrt, Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany
9Meteorological Research Institute, Tsukuba, Japan
10Max-Plank-Institut für Meteorologie, Hamburg, Germany
11National Center for Atmospheric Research, Boulder, CO, USA
12Università L'Aquila, Dipartimento di Fisica, L'Aquila, Italy
13Environment Canada, Toronto, Ontario, Canada
14Institute for Atmospheric and Climate Science ETH Zurich, Zurich, Switzerland
15Physical-Meteorological Observatory and World Radiation Center, Davos, Switzerland

Abstract. We have used total ozone columns and vertical profiles of ozone and temperature from 11 coupled Chemistry-Climate Models (CCMs) to project future solar ultraviolet radiation levels at the surface in the 21st century. The CCM simulations are used as input to a radiative transfer model for the simulation of the corresponding future UV irradiance levels under cloud free conditions, presented here as time series of monthly erythemal irradiance received at the surface during local noon covering the period 1960 to 2100. Starting from the first decade of the 21st century, the surface erythemal irradiance decreases globally as a result of the projected ozone recovery, at rates which are larger in the first half of the 21st century, compared to the period up to 2100. The magnitude of these decreases varies with latitude and is more pronounced at areas where ozone has been depleted most considerably after 1980. Over midlatitudes surface erythemal irradiance decreases between 5 and 15% by 2100 relative to 2000, while at the southern high latitudes these changes are twice as much. Climate change may affect future cloudiness, surface reflectivity and tropospheric aerosol loading, the effects of which are not included in this study. Therefore, the actual changes in future UV radiation are likely to change accordingly in the areas affected.

Citation: Tourpali, K., Bais, A. F., Kazantzidis, A., Zerefos, C. S., Akiyoshi, H., Austin, J., Brühl, C., Butchart, N., Chipperfield, M. P., Dameris, M., Deushi, M., Eyring, V., Giorgetta, M. A., Kinnison, D. E., Mancini, E., Marsh, D. R., Nagashima, T., Pitari, G., Plummer, D. A., Rozanov, E., Shibata, K., and Tian, W.: Clear sky UV simulations in the 21st century based on ozone and temperature projections from Chemistry-Climate Models, Atmos. Chem. Phys. Discuss., 8, 13043-13062, doi:10.5194/acpd-8-13043-2008, 2008.
 
Search ACPD
Discussion Paper
    XML
    Citation
    Final Revised Paper
    Share