
Electronic Supplement: Appendices 
A1 Singe solute molalities and water uptake 

In correspondence to Figures 2a and b, Figures A1a and b show the singe solute molalities and the 

associated water uptake of all compounds listed in Table 1. 

A2 Equilibrium Thermodynamics 

We follow the “classical” thermodynamics to derive the relevant equations for chemical 
equilibrium, in accord with basic textbooks (e.g. Denbigh, 1981). “Classical”, since water is 

generally omitted in equilibrium equations unless explicitly involved in the reaction, based on the 
assumption that water is neither consumed nor produced. However, when hydration is involved, 

water is consumed and released, which actually causes inconsistencies in the “classical” treatment. 

A2.1 Gibb’s free energy 

The general condition for thermodynamical and chemical equilibrium is that the total free energy 
of the system – usually referred to as Gibb’s free energy 

! 

(G) – is at a minimum, which implies that 

! 

dG = 0 (see e.g. Denbigh, 1981). 

The Gibb’s free energy expresses the sum of total free energies of the system, 

! 

G "U + PV #TS , 
by which the first term on the rhs denotes internal energy

! 

(U), and is always positive. The second 
term accounts for the energy associated with either changing a volume

! 

(V )  at constant pressure

! 

(P) , 

or by changing the pressure at constant volume; and can be either negative (e.g. by expansion) or 
positive (e.g. by compression). The third term accounts for the energy that is associated with the 
degree of order of the system at given temperature

! 

(T)  and entropy

! 

(S), and is always positive.  

Any differential change in 

! 

G yields  

! 

dG = dU + PdV +VdP "TdS " SdT = 0 , (A1) 

by which at constant temperature 

! 

(dT = 0)  the entropy term 

! 

(SdT) disappears. At constant pressure 

! 

(dP = 0), Eq. (A1) reduces to 

! 

dG = dU + PdV "TdS = 0. (A2) 

With the definition of the internal energy, 

! 

U = TS " PV + µn , which is known as the Euler 

equation, any differential change in 

! 

U  leads to (at constant 

! 

T  and 

! 

P )  

! 

dU
|T ,P

= TdS " PdV + µ n , (A3) 
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by which 

! 

SdT "VdP + n dµ = 0  is known as the Gibbs-Duhem equation. It shows that three intensive 

variables are not independent (

! 

T ,

! 

P , and 

! 

µ are intensive, the others extensive) – if one is known, the 

value of the third can be determined from the Gibbs-Duhem equation. 

Upon substitution of Eq. (A3) in Eq. (A2), i.e. eliminating 

! 

dU  with the Gibbs-Duhem relation, 
we can express 

! 

dG  in terms of a concentration change, which is zero when the

! 

j " th  chemical 

reaction that forms compound

! 

j  reaches equilibrium, i.e.  

! 

dG
|T ,P

j
= µij dnij

i=1

k

" = 0; (A4) 

! 

nij  denotes the amount of the 

! 

i " th  of 

! 

k  components and 

! 

µij  its chemical potential. 

A2.2 Equilibrium constant 

For the

! 

j " th  chemical reaction, the amount of each component is 

! 

nij = nij
o

+ " ij# j , where

! 

nij
o  is 

the initial amount of each component; 

! 

" ij is their stoichiometric coefficient and 

! 

" j  their reaction 

coordinate.  

Taking the derivative of 

! 

nij , i.e. 

! 

dnij = " ij  with 

! 

d" j =1, when substituted into Eq. (A4) gives 

! 

µij dnij
i=1

k

" = 0 . (A5) 

The chemical potentials 

! 

µij  are usually expressed in terms of their activities 

! 

aij , i.e.  

! 

µij = µij

o
+ RT " lnaij . 

! 

µij

o  denotes the chemical potential at a standard state and equals the partial 

molar Gibbs free energy 

! 

gij
o  with units in kilo Joule 

! 

[kJ /mol]; 

! 

R 

! 

[J /molK] denotes the universal 

gas constant, 

! 

T  

! 

[K] the temperature. Upon substitution into equation (A5), i.e.  

! 

" ij gij
o

i=1

k

# + RT $ " ij lnaij
i=1

k

# = 0 . (A6) 

which yields upon rearranging and exponentiation, with expressing the sum of the logarithm as their 
product, the equilibrium constant

! 

(K j ) for the

! 

j " th  chemical reaction at given temperature

! 

(T) , i.e. 

! 

K j = exp(" # ij gij
o

i=1

k

$ /RT) = aij
# ij

i=1

k

% . (A7) 

The temperature dependency of the equilibrium constant is calculated from the van’t Hoff 
equation (now dropping the index

! 

j), i.e.  
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! 

d lnK /dT = "H f (T) /(RT
2
), (A8) 

where 

! 

"Hf (T)  is the standard molar enthalpy change of formation of the 

! 

j " th  compound at 

temperature 

! 

T . For a small temperature change 

! 

"Hf  can be approximated by 

! 

"Hf (T) = "Hf

o
(T

o
) + "Cp

o
(T #T

o
) . (A9) 

! 

"Hf

o
(T

o
)  denotes the standard molar enthalpy change of the reaction at a reference temperature 

! 

T
o , (usually the standard-state temperature 298.15 K), and 

! 

"Cp
o
(T #T

o
) the change of the standard 

molar heat capacity at constant pressure compared to 

! 

T
o; it is implicitly assumed here that 

! 

"Hf

o  and  

! 

"Cp
o  are constant over the temperature range 

! 

T "T
o . 

Substituting Eq. (A9) into Eq. (A8) and integrating over 

! 

T "T
o , the temperature dependency of  

the equilibrium constant is obtained, i.e.  

! 

K(T) = Ko(To) " exp #$Hf

o
RT

o( ) " To /T #1( )#$Cp
o
R 1+ ln(To /T) #To /T( )[ ]. (A10) 

The data on 

! 

"G
o , 

! 

"Hf

o , and 

! 

"Cp
o  (needed to calculate equilibrium constants and their temperature 

dependency) can be obtained for instance from the CRC Handbook of Chemistry and Physics (2006).   

Finally, the activities (used in Eq. A7) of single-salt solutions consist of 

! 

±-ion pairs, whereas the 

! 

i " th  components 

! 

±-ion pair activity is usually expressed as (Robinson and Stokes, 1965)  

! 

a
i±

" ± = (#±m±)
" ± = a+

" +
a$

" $ = (#+m+)
" + (#$m$)

" $ = #±

" ±
m+

" +
m$

" $ . (A11) 

! 

" +
 and 

! 

"#  denote the number of moles of cations and anions per 1 mol of solute (

! 

±-ion pair) 

dissociating completely into 

! 

" ± = " + + "# ions. 

! 

m±
, 

! 

m+
, 

! 

m"
 denote the corresponding molalities, i.e. 

the concentration of the ions in the solution, by which the molality is defined as mole solute per kg 
solvent (water). 

! 

"±
,

! 

"+
,

! 

"#  are the dimensionless mean binary activity coefficient of the 

! 

±-ion pair, 

and the activity coefficients of the cations and anions, respectively. The activity coefficients are 

introduced to correct the solution molalities for non-ideality at higher solute concentrations due to 

ion-ion interactions.  

Eq. (A7) becomes in terms of activity coefficients and molalities 

! 

K j = (" ij±mij±)
# ij±

i=1

k

$ , (A12) 
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where the subscript 

! 

i  denotes 

! 

i " th  component (

! 

±-ion pair) of the 

! 

j " th  compound (reaction). 

Since 

! 

K j  is a characteristic constant for the

! 

j " th  chemical equilibrium reaction and usually 

determined with the aid of Eq. (A7) from experimentally gained thermodynamic data, Eq. (A12) 
enables to relate and calculate various solute properties that are difficult to measure, as for instance 

solute activities

! 

(aij ), molalities

! 

(mij ) and activity coefficients

! 

(" ij )  of 

! 

±-ion pairs, or of the individual 

cations and anions. However, the summation over 

! 

i  is usually only made over the 

! 

k "components 
that form the 

! 

j " th  compound, by which water is usually by definition omitted, as long it is neither 

consumed nor produced – even when being essential for the equilibrium reaction to take place. 

A2.3 Example  

For instance, for the example illustrated in Figure 1b), the stoichiometrical (i.e. on a molar basis) 
reaction of the dissociation of crystalline 

! 

(cr)  sodium chloride (NaCl) 

! 

±-ion pair into the aqueous 

! 

(aq)  sodium 

! 

(Na
+
) cation and chloride 

! 

(Cl
"
)  anion is  

! 

1" NaCl
(cr) #$ + " Na

+
( aq)

+ $% "Cl
%
( aq)

. (R-A1) 

The corresponding equilibrium constant for this

! 

j " th  reaction (R1) with its 

! 

i " th  components gives 

! 

KNaCl( cr )
= [Na

+
( aq)
]
" + + [Cl

#
( aq)
]
" # $ %+

" +%#
" # , (K-A1) 

by which 

! 

KNaCl( cr )
(T

o
) = 37.661 [mol

2
/kg

2
] with the constants 

! 

a = "#H f

o
RT

o( ) = "1.56  and 

! 

b = "Cp
o
/R =16.9  that are needed to calculate the temperature dependency according to Eq. (A10); 

! 

RT
o

= 8.314 [J /mol /K] " 298.15 [K] = 2.479 [KJ /mol]. 

A2.4 Solubility 

Although the above also applies to the calculation of the solubility constants, there are however 
some peculiarities about solubility equilibria that help apply important simplifications, despite the 

fact that solubility calculations can become quite complex, especially when involving complex-ion 
equilibria that allow to dissolve an insoluble salt.  

First, at equilibrium the solution is saturated, i.e. it contains the maximum concentration of ions 
that can exist in equilibrium with its solid (crystalline) phase. In this case the ion concentrations of 

! 

Na
+
(aq ) and 

! 

Cl
"
(aq ) are sufficiently high so that the rate at which precipitation occurs exactly balances 

the rate at which 

! 

NaCl
(cr)

 dissolves. Thus, there is no change in the concentration of these ions with 

time when the reaction is at equilibrium. The amount of solute that must be added to a given volume 
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of solvent to form a saturated solution is called the solubility of the solute. In other words, if the 

system is at equilibrium the ion product, which is the product of the concentrations of the ions, 
equals the solubility product for the solute. If the ion product is larger or smaller than the solubility 

product for the solute, the system not at equilibrium, but the system can rapidly adjust according to 

Le Chatelier's principle, so that equilibrium is restored after the excess ions precipitate from solution 
as a solid 

! 

(NaCl
(cr )
) , or a solid dissolves until any deficit in the ion product is compensated. Thus, 

the solubility constant expression for reaction (AR1) can be calculated from (AK1) when divided by 
the concentration of the solid, by which the concentration of a solid 

! 

(NaCl
(cr )
)  is calculated from its 

density and its molar mass. For instance, for solid 

! 

NaCl
(cr)

, i.e.  

! 

"NaCl( cr ) = 2.17g NaCl(cr)

1cm
3

#
1cm

3

1mL
#
1000 mL

1L
#
1mol NaCl(cr)

58.44 g NaCl(cr)
= 37.13mol NaCl(cr) /L . 

(A13) 

 Since the concentration of the solid is constant, which has no effect on the equilibrium, it is built 
into the solubility constant for the equilibrium reaction. According to (K-A1) we have 

! 

Ksp,NaCl = KNaCl( cr )
" aNaCl( cr ) = a

Na
+

# + " a
Cl

$

# $ , (K-A2) 

by which (K-A2) is a constant, which is proportional to the solubility of the salt and hence called 
the solubility product equilibrium constant 

! 

(Ksp,NaCl )  for reaction (R-A1). Furthermore, the solubility 

product constant requires that 

! 

" +
 cations 

! 

(Na
+
( aq)
)  are released for 

! 

"#  anions 

! 

(Cl
"
( aq)
), because there 

is no other source of either ion in this solution, so that the concentrations of the ions at equilibrium 

are the same, i.e.  

! 

a
s

"s

= a+

"+

= a#
"# . (A14) 

In general, it is assumed that salt solutes dissociate into their ions when they dissolve in water. 
Ionic compounds dissolve in water if the energy released when the ions interact with water 

molecules compensates for both a) the energy needed to break the ionic bonds in the solid and b) the 
energy required to separate the water molecules so that the ions can be inserted into solution.  

A2.5 Nernst equation 

For charged species, the electrical force must be considered, by which the potential for an 
electrochemical reaction is described by (Nernst, 1889) i.e.  

! 

E = E
o
" R T /(z F) ln(Q

c
) . (A15) 
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In the Nernst equation (A15), 

! 

E [V ] is the electrochemical cell potential at some moment in time, 

! 

E
o
[V ] the cell potential when the reaction is at standard-state conditions, 

! 

R [J /mol /K] the ideal gas 

constant in joules per mole and Kelvin, 

! 

T [K] the temperature in Kelvin, 

! 

z [1/mol]  the number of 

moles of electrons transferred in the balanced equation for the reaction, 

! 

F = 96484 [C mol
"1
] the 

Faraday-constant that expresses the charge on a mole of electrons (calculated from Avogadro's 

number and the charge on a single electron 

! 

(F = 6.022045 "10
23
[mol

#1
] $1.6021892 "10

#19
[As /e

#
]), 

and 

! 

Q
c
 the reaction quotient. The magnitude of the cell potential is a measure of the driving force 

behind a reaction. The larger the value of the cell potential, the further the reaction is from 
equilibrium, while at equilibrium 

! 

("G = 0) the overall cell potential 

! 

E [V ] = 0. Since then the 

reaction quotient equals the equilibrium constant 

! 

(Q
c
=K

c
) , the Nernst equation is related to the 

partial Gibbs free energy by, i.e. 

! 

g
o

= ±z F E
o

= RT ln(Kc) , (A16) 

and can hence be used to measure the equilibrium constant for a reaction. 

The condition that the overall cell potential is zero at equilibrium 

! 

(E = 0) implies 

electroneutrality, so that the ability of the solution to conduct an electric current by the ions of the 
solute that result from dissociation must be compensated for a binary solution (one solute and 

solvent) by an ion flow that results from the dissociation of the solvent (water), by which 2 moles of 

water will be consumed, i.e. 

! 

2 H
2
O(l)"H

3
O

+
( aq)

+OH
#
( aq)

. Since measurements suggest that the 

ability of pure water to conduct an electrical current at 

! 

25
o
C  contains 

! 

1.0 "10
#7
[mol /L] moles per 

liter of each of these ions, i.e. 

! 

[H
3
O

+
( aq)
] = [OH

"
( aq)
] =1.0 #10

"7
[mol /L], by which their product 

remains constant at equilibrium, which yields upon the multiplication with the molar concentration 

of water, the water dissociation equilibrium constant,

! 

K
w

=1.0 "10
#14 ; one kilogram of pure water 

always contains 

! 

1000 [g]/MH2O
[g /mol] =1000 /18.015 = 55.5093 [mol]. 

 Although 

! 

K
w
 is defined in terms of the dissociation of water, this equilibrium constant expression 

is equally valid for solutions of acids and bases dissolved in water. Regardless of the source of the 

! 

H
3
O

+
(aq )

and 

! 

OH
"
(aq )

 ions in water, the product of the concentrations of these ions at equilibrium at 

! 

25
o
C   is always

! 

1.0 "10
#14
[mol

2
L
#2
] . Thus adding an acid or base to water therefore has an effect on 

the concentration of both the 

! 

H
3
O

+
(aq )

 and 

! 

OH
"
(aq )

 ions; they can be hence related in terms of the 

definition of a negative of the logarithm by

! 

pH + pOH =14 , with 

! 

pH = "log[H3O
+
(aq ) ] and 

! 

pOH = "log[OH"
( aq) ].  
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Similarly, the discussion can be extended to acid/base-dissociation equilibria, including cation-

acids and anion-bases, which yield accordingly

! 

pKa
 and 

! 

pKb  values that indicate the strength of the 

acid or base, respectively. However, for chemical reactions involving hydration the assumption that 
water can be omitted in equilibrium reactions does not really hold, since water is actually consumed 

by hydration. Neglecting water in equilibrium reactions therefore introduces a conceptual problem 
and unnecessarily complicates the equations. In the present work we therefore reformulate chemical 

equilibrium to include water and exploit the implications for atmospheric aerosol modeling. 


