Atmos. Chem. Phys. Discuss., 7, 17741-17767, 2007
www.atmos-chem-phys-discuss.net/7/17741/2007/
doi:10.5194/acpd-7-17741-2007
© Author(s) 2007. This work is licensed under the
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.
Review Status
This discussion paper has been under review for the journal Atmospheric Chemistry and Physics (ACP). Please refer to the corresponding final paper in ACP.
Measurement of the water vapour vertical profile and of the Earth's outgoing far infrared flux
L. Palchetti, G. Bianchini, B. Carli, U. Cortesi, and S. Del Bianco
Istituto di Fisica Applicata "Nello Carrara" – Consiglio Nazionale delle Ricerche IFAC–CNR, Sesto Fiorentino, Firenze, 50019, Italy

Abstract. Our understanding of global warming depends on the accuracy with which the atmospheric components that modulate the Earth's radiation budget are known. Many uncertainties still exist on the radiative effect of water in the different spectral regions, among which the far infrared where few observations have been made. An assessment is shown of the atmospheric outgoing flux obtained from a balloon-borne platform with wideband spectrally resolved nadir measurements at the top-of-atmosphere over the full spectral range, including the far infrared, from 100 to 1400 cm−1, made by a Fourier transform spectrometer with uncooled detectors. From these measurements, we retrieve 15 pieces of information about water vapour and temperature profiles, and surface temperature, with a precision of 5% for the mean water vapour profile and a major improvement of the upper troposphere-lower stratosphere knowledge. The retrieved atmospheric state makes it possible to calculate the emitted radiance as a function of the zenith angle and to determine the outgoing radiation flux, proving that spectrally resolved observations can be used to derive accurate information on the integrated flux. While the retrieved temperature is in good agreement with ECMWF analysis, the retrieved water vapour profile differs significantly, and, depending on time and location, the derived flux differs in the far infrared (0–600 cm−1) from that derived from ECMWF by 2–3.5 W/m2±0.4 W/m2. The observed discrepancy is larger than current estimates of radiative forcing due to CO2 increases since pre-industrial time. The error with which the flux is determined is caused mainly by calibration uncertainties while detector noise has a negligible effect, proving that uncooled detectors are adequate for top of the atmosphere radiometry.

Citation: Palchetti, L., Bianchini, G., Carli, B., Cortesi, U., and Del Bianco, S.: Measurement of the water vapour vertical profile and of the Earth's outgoing far infrared flux, Atmos. Chem. Phys. Discuss., 7, 17741-17767, doi:10.5194/acpd-7-17741-2007, 2007.
 
Search ACPD
Discussion Paper
    XML
    Citation
    Final Revised Paper
    Share