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Abstract

Methane is a climatologically important greenhouse gas, which plays a key role in
regulating water vapour in the stratosphere and hydroxyl radicals in the troposphere.
Recent findings that vegetation emits methane have stimulated efforts to ascertain
the impact of this source on the global budget. In this work, we present the re-5

sults of high frequency (ca. 1 min−1) methane measurements conducted in the bo-
real forests of Finland and the tropical forests of Suriname, in April–May, 2005 and
October 2005 respectively. The measurements were performed using a gas chro-
matograph – flame ionization detector (GC-FID). The average of the median mixing
ratios during a typical diel cycle were 1.83µmol mol−1 and 1.74µmol mol−1 for the10

boreal forest ecosystem and tropical forest ecosystem respectively, with remarkable
similarity in the time series of both the boreal and tropical diel profiles. Night time
methane emission flux of the boreal forest ecosystem, calculated from the increase
of methane during the night and measured nocturnal boundary layer heights yields a
flux of (3.62±0.87)×1011 molecules cm−2 s−1(or 45.5±11 Tg CH4 yr−1 for global boreal15

forest area). This is a source contribution of circa 8% of the global methane budget.
These results highlight the importance of the boreal and tropical forest ecosystems for
the global budget of methane. The results are also discussed in the context of recent
work reporting high methane mixing ratios over tropical forests using space borne near
infra-red spectroscopy measurements.20

1 Introduction

Methane is the most abundant hydrocarbon (circa 1.8µmol mol−1) in the atmosphere.
It has significant implications for atmospheric chemistry and climate, as it plays a key
role in regulating stratospheric water vapour and tropospheric hydroxyl radicals (Khalil,
2000). Atmospheric methane mixing ratios have nearly tripled since pre-industrial25

times (Prather et al. 2001; IPCC 2001), and while it is generally agreed that approxi-
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mately 600 Tg CH4 yr−1(1 Tg=1012 g) is released to the atmosphere globally, estimates
of some of the individual source and sink terms within the global budget are rather
uncertain (Lelieveld et al., 1998). For example, the range of the emission estimates
for wetlands, the single largest natural methane source, is 92–232 Tg CH4 yr−1 with a
best guess estimate of 145 Tg CH4 yr−1 (Wuebbles et al., 2002; Matthews et al., 2000;5

Prather et al., 2001). With such uncertainties in the existing global budget of methane,
the discovery that terrestrial plants emit methane under aerobic conditions (Keppler
et al., 2006) and reports of enhanced methane emissions from Siberian thaw lakes
(Walter et al., 2006), have reinvigorated efforts to better constrain sources and sinks.

The global estimate of a 62–236 Tg CH4 yr−1 vegetation source by Keppler et10

al. (2006), was based on an extrapolation of incubation chamber measurements us-
ing the metric of net primary productivity (NPP) for various ecosystems, and subse-
quent studies (Butenhoff and Khalil, 2007; Houweling et al., 2006; Ferreti et al., 2006;
Kirschbaum et al., 2006; Parsons et al., 2006), have presented revised upper limit
estimates in the range of 60–176 Tg CH4 yr−1, based on alternative up-scaling ap-15

proaches. Very recently, using 13C and a laser based measuring technique, Dueck
et al. (2007) found no evidence of substantial aerobic methane emissions from ter-
restrial plants and concluded that the contribution of the new terrestrial plant source
is very small at best. As the underlying production mechanism is still unknown, any
extrapolation to the global scale is highly speculative. Reanalysis and potential rein-20

terpretation of methane measurements conducted in Venezuela (Crutzen et al., 2006;
Sanhueza et al., 2006) concluded that tropical savannah vegetation may also emit
methane. Using space borne near infra-red remote sensing by the scanning imaging
absorption spectrometer for atmospheric chartography (SCHIAMACHY), Frankenberg
et al. (2005) observed almost 40 nmol/mol higher mixing ratios of methane over tropical25

rainforests compared to values predicted by a global 3D transport model (TM3) for the
period October–November, 2003. Space borne measurements provide greater spatial
coverage compared to local in-situ measurements at surface sites, which are closer
to sources and sinks. On the other hand, the column averaging employed in volume
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mixing ratio (VMR) retrievals of space borne measurements, has potential offsets and
biases (Bergamaschi et al., 2007; Frankenberg et al., 2006), rendering remote sensing
measurements less precise and less accurate than in-situ field measurements. A com-
bination of in-situ and satellite retrieved methane measurements from forested regions
therefore appears to be an ideal approach to assess the vegetative methane emission.5

However, such in-situ data (i.e. real time diel profiles of methane) from the boreal and
tropical forests are surprisingly sparse, even though boreal and tropical forests collec-
tively represent almost 76 percent of all forested land and hence have a large potential
impact on the global methane budget.

In this study, we present the results from a high frequency gas chromatograph10

equipped with a flame ionization detector (GC-FID). Measurements were taken ap-
proximately every minute within a boreal forest ecosystem in Finland and a tropical
forest ecosystem in Suriname in April–May, 2005 and October 2005 respectively. We
discuss trends in the diel profiles, calculate the nighttime ecosystem flux for the boreal
forest ecosystem and consider potential implications of these results.15

2 Experimental

2.1 Site description: Boreal forest

Measurements were conducted from 16 April to 1 May 2005, as part of the
BACCI/QUEST III campaign near (<100 m) the SMEAR II measurement station (Sta-
tion for Measuring Forest Ecosystem- Atmosphere Relations) in Hyytiäla, southern Fin-20

land (61◦51′ N, 24◦17′ E, 170 m a.s.l.). About 600 m to the south west of the measure-
ment station, there is an oblong lake (circa 2 km long). Figure 1a shows a picture
of the boreal forest vegetation in the vicinity of the measurement tower. In addition
to routinely measured meteorological parameters such as wind direction, wind speed
etc., the SMEAR II station also conducts tower based measurements of gases such25

as CO2 and O3 throughout the year, providing a comprehensive suite of supporting
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measurements as detailed in Hari and Kulmala (2005) and Vesala et al. (1998). A de-
tailed distribution of the different land use categories in a 1600 km2 area around the
SMEAR II station has been described recently in Haapanala et al. (2007) using data
derived from satellite photographs and forest inventories of the National Land Survey
of Finland. The 1600 km2 area around the SMEAR II station has spruce dominated5

forest (Picea abies; 25.5%), pine dominated forest (Pinus sylvestris; 22.7 %), mixed
forest (European aspen: Populus tremula and Birch: Betula pendula and pubescens;
20.9%), deciduous forest (2%), agriculture (10.2%), wetlands (0.7%) and water bodies
(13%). The Scots pine forest was planted in 1964 and in 2004 the canopy height was
around 14 m (Rinne et al., 1999; Hari and Kulmala, 2005).10

Figure 2 shows the wind rose plot for the period of our study in Hyytiäla. During
the campaign the wind blew mostly from the 0◦–135◦ and 315◦–360◦ wind sectors.
Wind speeds were generally less than 1 m s−1, although occasionally they reached
up to 1.5 m s−1. Our study was conducted in April–May, which marks the transition
from winter to spring as the ground begins to thaw and the temperature increases15

marking the onset of photosynthetic activity (Suni et al., 2003). The minimum and
maximum temperatures during the period of our study were around −5◦C (typically at
circa 06:00 local time LT) and 11◦C (typically at circa 14:00 LT), with no well defined
increasing trend, from the first to the last day of the study.

The annual mean temperature at the site is 3◦C. The warmest month is July with a20

mean temperature of 16◦C and the coldest is February with mean temperature of −8◦C.
Detailed long term climatic data for the site is available in Drebs et al. (2002).

2.2 Site description: Tropical forest

High frequency methane measurements were also conducted using the same in-
strument, within the nature reserve of Brownsberg (4◦56′ N, 55◦10′ W, 512 m a.s.l.),25

Suriname from 5–14 October, 2005, as part of the Guyana Atmosphere-Biosphere
exchange and Radical Intensive Experiment with the Learjet (GABRIEL) campaign.
Brownsberg is situated around 120 km inland and is topographically elevated with re-
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spect to the Brokopondo lake (circa 40 km long), which lies south east of the measuring
site. Figure 1b gives a view of the vegetation from Brownsberg where the canopy height
was typically around 40 m. Rainforest vegetation is too diverse to be classified in terms
specific plant types, however, based on the United States Geological Survey (USGS)
world vegetation maps, the main general vegetation types in the area are lowland ever-5

green broad leaf trees, semi-evergreen moist broadleaf trees and some schlerophyllus
dry forest trees. Upwind from the site is 300–400 km of pristine rainforest before the
coast of French Guyana. During October, Suriname experiences the long dry season,
in which steady south easterly winds advect clean marine air westwards over the rain-
forest. Typically, the range of temperatures experienced during this period is between10

20◦C–32◦C.

2.3 Sampling procedure and measurements:

Ambient forest air was sampled within the canopy, at heights of 8.5 m and 35 m for
the boreal and the tropical forests respectively. Employing the same sampling pro-
cedure for both sites, ambient air was drawn rapidly (circa 6 L min−1; inlet residence15

time <12 s) and continuously through 0.64 cm diameter and 25m long shrouded Teflon
tubing using an external pump (Rietschle Thomas, Memmingen GmbH, Memmingen).
From this main flow of ∼6 L min−1, 1.2 L min−1 was drawn continuously by an inter-
nal pump within the methane instrument, which is a commercial gas chromatograph
equipped with a flame ionization detector (GC-FID) (Model 55C Hydrocarbon Ana-20

lyzer, Thermo Electron Corporation, Massachusetts, USA). Nitrogen was used as car-
rier gas while hydrogen and zero air were used as fuel for the FID detector. Central to
the instrument′s operation is an eight port, two position, rotary valve which is used to
introduce the gas sample into the analyzer and to control the flow of gases through the
chromatographic column. The operational temperature of this column is 65◦C. After25

separation from other airborne components within the column, the methane peak is
measured by the FID and the signal area is converted into a mixing ratio by compari-
son with the signal produced by a calibration gas (3.96µmol mol−1 methane standard
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procured from Westfalen AG, Germany; stated accuracy 2%). The detection limit of the
instrument is 20 nmol mol−1 methane and the measurement range is 0–20µmol mol−1

methane, over which the detector responds linearly. One measurement was taken
approximately every 70 s (frequency of measurements = 0.014 Hz).

The accuracy and precision errors are each ±2% of the measured value. However,5

for the data presented here, the overall uncertainty has been determined as 2.58%,
comprising of the 2% accuracy error (a systematic error which is the same for all mea-
surements) and a reduced precision error of 0.58% for each data point due to the
15 min time averaging employed in preparing the box and whisker plots (Figs. 3 and 4).

In order to check for instrumental drifts, all the basic instrumental operational param-10

eters such as the oven temperature, column temperature and support gas pressures
were monitored continuously, in addition to regular in-field calibrations performed at the
start, middle and end of the measurement campaigns.

At the SMEAR II station, carbon dioxide was measured using an infrared light ab-
sorption analyser (URAS 4 CO2, Hartmann & Braun, Frankfurt am Main, Germany)15

while the wind speed and wind direction were measured with an ultrasonic anemome-
ter (Ultrasonic anemometer 2D, Adolf Thies GmbH, Göttingen, Germany).

3 Results

3.1 Boreal forest: trends in methane mixing ratios and diel cycle

Methane mixing ratios were highest when the winds were blowing from the north, which20

has extensive forest cover and low population (Hari and Kulmala et al., 2005). In order
to minimise influences from anthropogenic emissions (from the city of Tampere south
east of the site), and from wetlands (primarily south west of the site, Haapanala et
al., 2007), the methane data was filtered to include data only from the 315◦–45◦ wind
sector. A box and whisker diel plot of the filtered data for the entire campaign is shown25

in Fig. 3. As per convention, the box encloses all values from the 25–75 percentile
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while the whiskers encompass all values in the 5–95 percentile range. It can be seen
that the median and mean values compare closely most of the time, indicating that
no sharp bursts of methane emissions were detected. The plot also shows a distinct
diel variation in the mixing ratios of methane, with lowest median values of around 1.81
µmol mol−1 occurring typically between 15:00–16:00 LT and the highest median mixing5

ratios of the day (∼1.85µmol mol−1) occurring at around 06:00 LT. Variability in the
methane mixing ratios during the campaign was seen to be least for the measurements
between 16:00 and 18:00 LT and higher during the early morning hours. Also evident
is a steady increase in the median methane mixing ratios from around 20:00 LT in
the evening (just after sunset) till 06:00 LT in the morning (just before sunrise). The10

average of the median mixing ratios during a typical diel cycle was 1.83µmol mol−1.

3.2 Tropical forest: Trends in methane mixing ratios and diel cycle

Figure 4 shows a box and whisker plot derived from the continuous 8700 high fre-
quency (0.014 Hz) measurements conducted in Brownsberg from 5–14 October, 2005.
The median mixing ratios of methane again show a clear diel variation. The median15

mixing ratios were highest (∼1.76µmol mol−1) from 06:30 to 08:00 LT in the morn-
ing, and lowest (∼1.72µmol mol−1) from 14:30 to 16:00 LT in the afternoon. Variability
is comparatively higher between 16:30 and 19:00 LT. Median and mean values again
differ only slightly, except between 19:30 to 20:30 LT, when the difference is almost
10 nmol mol−1. Remarkably, the median methane mixing ratios show a distinct increase20

from 19:45 LT in the evening till around 05:45 LT in the morning. The average of the
median mixing ratios during a typical diel cycle at Brownsberg was 1.74µmol mol−1.

3.3 Determining the night time methane flux for the boreal forest ecosystem

In order to calculate the nighttime methane flux for the boreal forest using median
mixing ratios in the box and whisker diel profile (Fig. 3), it is necessary to measure the25

nocturnal boundary layer (NBL) growth. Additionally, to establish whether the NBL is
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well mixed, it is also important to assess whether there is any significant gradient in the
vertical profile of methane. In Sect. 3.3.1 we describe how the boundary layer heights
were deduced while Sect. 3.3.2 explains how vertical gradients were assessed. Finally,
Sect. 3.3.3 details the flux calculation methodology.

3.3.1 Determining the boundary layer height5

Balloon soundings with temperature and humidity sensors were launched (approxi-
mately thrice a day) during the campaign to determine the height of the boundary
layer. As the height of the boundary layer scales directly with the calculated flux (see
Sect. 3.3.3), and is therefore an important step of the flux calculation methodology, we
have illustrated how the NBLs were deduced using typical examples in Figs. 5a and10

5b. Figure 5a shows the vertical profiles of potential temperature and relative humidity
measured on 23 April at 07:45 LT while Fig. 5b shows how the boundary layer heights
were established from the turning points of the potential temperature vertical profiles
at 19:45 LT on 24 April, and 05:45 LT on 25 April, 2005. Table 1 lists the boundary
layer height values that were measured in the evening (∼20:00 LT) and the morning15

(∼06:00 LT), on consecutive days from 24–28 April. From these values the average
evening time (∼20:00 LT) boundary layer height was established as 80 m while the av-
erage morning time (∼06:00 LT) boundary layer height was established as 180 m. A
gradual growth of this magnitude is in keeping with current understanding of nocturnal
boundary layer dynamics (Stull, 1988).20

3.3.2 Assessing vertical gradients

Vertical gradients within the nocturnal boundary layer (NBL) were assessed using ver-
tical profiles of carbon dioxide made at multiple heights from the SMEAR II measure-
ment tower (heights: 4.2 m, 8.4 m, 16.8 m, 33.6 m, 50.4 m, 67.4 m, 74 m) at the start
(17 and 18 April), middle (20 and 21 April) and end (30 April and 1 May) of the study25

period (16 April to 1 May). Carbon dioxide is emitted from the forest at night and has a
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rather long atmospheric lifetime (on the order of several years). Thus within the NBL,
the vertical gradients of both methane and carbon dioxide will be driven by physical pa-
rameters rather than chemical reactions with other species. Figure 6 shows the carbon
dioxide vertical profiles in the evening, when the NBL starts to grow (∼20:00 LT) and in
the morning (∼06:00 LT), when it has attained its maximum height. In order to examine5

gradients with respect to the methane sampling height of 8.5 m, the values in Fig. 6 are
represented as a percentage of the carbon dioxide mixing ratio at the 8.5 m level. It
can also be seen in Fig. 6, that the difference between the highest point and the 8.5 m
level is typically less than 0.3% and in no case more than 0.5%. This shows that the
NBL was well mixed and that mixing ratios measured at the 8.5 m level can be taken to10

be representative of the entire mixed NBL, for both carbon dioxide and methane.

3.3.3 Flux calculation

Consider a box of cross section area A cm2 and height 80 m at 20:00 LT which grows
to a height of 180 m at 06:00 LT. Then using the mass balance approach, the total
number of methane molecules in the box at 06:00 LT (N06:00) can be expressed as the15

contribution of the initial number of methane molecules in the box at 20:00 LT (N20:00),
the increase due to the emission flux (FCH4), assumed to be constant from 20:00–
06:00 LT, and the contribution of methane molecules due to mixing of residual air from
above (NResidualLayer), as the box grows from 80 m at 20:00 LT to 180 m at 06:00 LT.

Expressing the above as an equation we get,20

N06:00=N20:00+FCH4×A×(36000) + NResidualLayer (1)

Where,
N06:00 = CH4 [t=06:00] × C.F. × A × 18 000;
N20:00 = CH4 [t=20:00] × C.F. × A × 8000;
NResidualLayer = CH4 [avg. b/w 16:00 LT and 19:00 LT] × C.F. × A × 10 000;25

C.F. is the factor used for converting nmol mol−1 to molecules cm−3 = 2.69×1010;
and from Fig. 3,

14020

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/7/14011/2007/acpd-7-14011-2007-print.pdf
http://www.atmos-chem-phys-discuss.net/7/14011/2007/acpd-7-14011-2007-discussion.html
http://www.egu.eu


ACPD
7, 14011–14039, 2007

Methane
measurements in

Tropical and Boreal
forests

V. Sinha et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

CH4 [t=06:00], the median mixing ratio at 06:00 LT = 1850 nmol mol−1

CH4 [t=20:00], the median mixing ratio at 20:00 LT = 1820 nmol mol−1

and CH4 [avg. b/w 16:00 and 19:00], the average of median mixing ratios be-
tween 16:00 LT and 19:00 LT (assumed to be the residual layer mixing ratio) =
1819 nmol mol−1

5

Using appropriate values in Eq. (1), we derive a net night time ecosystem emission
flux of 3.62×1011 CH4 molecules cm−2 s−1.

4 Discussion

4.1 Boreal forest data

Previous work on methane emissions from boreal forest ecosystems has been mainly10

based in Canada and the United States (Simpson et al., 1999, 1997). At Hyytiäla, a
background forest site comprising of more than 80% vegetation in 1600 km2 of sur-
rounding area (Haapanala et al., 2007), research has been mainly focused on aerosol
and emissions of reactive biogenic compounds such as terpenes and oxygenated
volatile organic compounds (Kulmala et al., 2004; Tunved et al., 2006; Yassaa and15

Williams, 2007).
To our knowledge, this is the first time that such high resolution methane diel profiles

have been reported from a boreal forest ecosystem, showing night time emission and
hence accumulation of methane within the NBL. The atmospheric lifetime of methane
is around 8.9 years and so the diel variation at Hyytiäla cannot be explained by the20

reaction of methane with hydroxyl radicals during daytime. Rather, the diel profile
of methane is driven by the dynamics of the boundary layer coupled with biogenic
emissions or uptake. After sunset, the ground starts to cool radiatively, causing the
growth of a stable nocturnal boundary layer (NBL). Thus there is a decoupling (in-
hibited gas exchange) of the surface boundary layer from the free troposphere (Stull,25

1988). Although during the night the nocturnal boundary layer deepens, mixing ratios

14021
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of methane rise through the night clearly indicating an emission. After sunrise, the
ground starts to warm and the surface heat flux causes the boundary layer to grow
until it reaches its maximum height in the afternoon. The volume of this daytime well
mixed layer is greater than the volume of the well mixed NBL, and the dilution effect
of air from above overwhelms the emissions during the day, leading to a daytime de-5

crease in the volume mixing ratio of methane (see Fig. 3). When compared with three
month averaged mixing ratios for April–June, 2003 of circa 1.75 µmol mol−1 methane
over Hyytiäla (Fig. 5 in Bergamaschi et al., 2007) based on SCHIAMACHY measure-
ments, the value of 1.83µmol mol−1presented here for 2005 is almost 80 nmol mol−1

higher. The flux of circa 4 mg methane m−2 day−1 (1.74×1011 molecules cm2 s−1) re-10

ported in the same work is also considerably smaller in comparison to our night time
flux of 3.62×1011 molecules cm2 s−1. One explanation for this difference could be that
source strengths may have increased in 2005 compared to 2003, as the sink due to
OH is unlikely to have changed by factor of 2, between 2003 and 2005. Alternatively,
it might be that potential offsets and biases in the SCHIAMACHY (Frankenberg et al.,15

2006; Bergamaschi et al., 2007) retrieval scheme cause it to underestimate methane
over Hyytiäla.

The boreal forest ecosystem has been previously reported as both a net sink
and a net source, for methane. However, this has not been well character-
ized. While Tyler (1991) and Steudler et al. (1989) reported a sink for the bo-20

real forest ecosystem, Simpson et al. (1997) reported a net emission flux of 0.8–
1.05×1011 molecules cm−2 s−1 (mixing ratio circa 1.82–1.90µmol mol−1) from a boreal
forest ecosystem in Saskatchewan during springtime (April–September, 1994) using
micrometeorological tower measurements. Reports of the boreal forest as a net sink
for methane are almost exclusively based on data from chamber measurements (Sav-25

age et al., 1997; Schiller and Hastie et al, 1996; Whalen et al., 1992). Simpson et
al. (1999) suggested that the apparent discrepancy is most probably because cham-
ber measurements are conducted close to the surface and are influenced strongly by
the soil, which is known to uptake methane. Further, Simpson et al. (1997) reported
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that micrometeorological measurements conducted only at the base of the tower indi-
cated the forest to be a sink while overall, the forest was found to be a net source of
methane.

As detailed in Khalil (2000) and references therein, methane emissions can vary con-
siderably based on seasonality, land use and environmental parameters such as soil5

temperature and water table levels. Nevertheless, bottom up estimates using in-situ
field measurements are useful to get an idea about the possible contribution of partic-
ular ecosystem types to the global budget. Extrapolating the net night time methane
emission flux of 3.62×1011 molecules cm−2 s−1 derived in this work, to the global boreal
forest area of 1.5×1017 cm2 (Tunved et al., 2006), we estimate an annual boreal forest10

ecosystem flux of 45.5 Tg CH4 yr−1. This is around 7.5% of the estimated global 600 Tg
CH4 yr−1 released into the atmosphere. It should be noted however, that this flux calcu-
lation methodology is rather sensitive to the NBL estimates. Based on the NBL height
variability observed at Hyytiäla (see Table 1), this introduces an uncertainty of up to
±25% for the calculated flux.15

From our data, it is not possible to derive an accurate boreal vegetation flux as the
measured flux is a net ecosystem flux. However for the planning of future studies that
seek to derive the vegetation flux using in situ field measurements, and to illustrate the
challenge inherent in obtaining a field estimate of emissions only due to vegetation, we
discuss herein a land use based approach which would help to constrain the source20

contribution of vegetation to the global methane budget, using in-situ field measure-
ments from different forest ecosystem types. This would be especially useful, since the
laboratory based up scaling estimates as well as the subsequent model estimates, for
the contribution of the new source discovered by Keppler et al. (2006) have consider-
able uncertainty.25

Average fluxes compiled by Bartlett and Harriss (1993) for broad ecosys-
tem types show that values for the boreal wetlands are between 3.7–4.1×
1012 molecules cm−2 s−1(or 87–96 ng m−2 s−1). The average methane emission
flux, from southern boreal lakes (located between 60◦57′, 24◦27′ and 61◦22′,
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25◦15′) for the growing seasons of April–September (years 1998–2002), is
2.15×1012 molecules cm−2 s−1(Bergstrom et al., 2006). Thus a wetland flux of
4.1×1012 molecules cm−2 s−1 and lake emission flux of 2.15×1012 molecules cm−2 s−1

can be considered as generous estimates for wetland and lake emissions in Hyytiäla
(61◦51′ N, 24◦17′ E) during April–May. Knowing that wetlands and water bodies make5

up 0.7% and 13% of the 1600 km2 footprint area around the measurement site
(Sect. 2.1) a conservative estimate of the boreal vegetation can be calculated as fol-
lows:

Wetlandflux + Lakeflux + Vegetationflux = Net ecosystem flux (2)

That is,10

0.7% of 4.18×1012 molecules cm−2 s−1 + 13% of 2.15×1012 molecules cm−2 s−1 +
Vegetation flux = 3.62 ×1011 molecules cm−2 s−1

Solving the above yields a boreal vegetation flux of 5.32×1010 molecules cm−2 s−1.
Upscaling for the global boreal forest area of 1.5×1017 cm2 (Tunved et al., 2006), the
contribution of boreal vegetation to the total methane budget would be circa 6.7 Tg15

CH4 yr−1. Note that this is a highly uncertain estimate because the contribution of
the individual components in Eq. (2) are in themselves quite uncertain, and were not
measured concurrently with the methane measurements of this study, and even a circa
1% change in the flux value used for wetlands would render the boreal vegetation
flux negligible. It should also be noted that an estimate based on such an approach20

would probably be a lower range estimate because according to Keppler et al. (2006)
plants emit 2–5 fold more methane during the day, so that the net ecosystem flux might
actually be higher if day time emissions could be included.

Thus, as reiterated earlier, based on the data obtained in this study, we can neither
confirm nor disprove whether boreal vegetation emits methane.25

Keppler et al. (2006) reported boreal vegetation emissions to be in the range of
1.1–4.1 Tg CH4 yr−1, based on the upscaling metric of net primary productivity (NPP).
Using the metrics of leaf mass index and photosynthesis rates for different biomes,
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Kirschbaum et al. (2006) upscaled the results of Keppler et al. (2006) and reported
boreal vegetation emission estimates of 2.8 Tg yr−1 and 0.6 Tg yr−1, respectively. Emu-
lating the Kirschbaum et al. (2006) approach of biome leaf mass for upscaling, Parsons
et al. (2006) revaluated the results of Keppler et al. (2006) and proposed an estimate
of 3.6 Tg CH4 yr−1 for boreal vegetation. Thus based on these previous estimates, it5

appears that boreal vegetation contributes only circa 1% to the global methane budget.
The boreal ecosystem as a whole, however, based the results of this study, contributes
almost 7.5%.

4.2 Tropical forest data

Analogous to the boreal methane profile, the diel profile from Brownsberg (Fig. 4) is10

also characterized by an increase in the median methane mixing ratios during night-
time. Carmo et al. (2006) and Crutzen et al. (2006) have reported similar profiles from
upland amazon forests and mixed tropical savannah grasslands, respectively. Franken-
berg et al. (2005) observed enhanced mixing ratios of methane over tropical rainforests
and called for in-situ measurements to validate their measurements. It is interesting to15

note that compared to the SCHIAMACHY measurements of 1.76µmol mol−1 methane,
and the global chemistry transport model (TM3) value of 1.72µmol mol−1 for the same
season in 2003 over Suriname, the average of all our in situ measurements in 2005
is 1.74µmol mol−1. If we assume that the sources and sinks in 2003 and 2005 were
not significantly different, then the in-situ measurements would seem to suggest that20

the enhanced emissions over the Suriname rainforest are probably not as strong as
first reported in Frankenberg et al. (2005). The latter argument is supported by the
work of Bergamaschi et al. (2007) that extended the original analysis by Frankenberg
et al. (2006), and reported that SCHIAMACHY CH4 retrievals may have some bias (up
to ∼30 nmol mol−1) that depends on latitude and season.25

Krejci et al. (2005) have estimated the NBL over the rainforest in Suriname to be
less than 250 m. Brownsberg is situated on a hill (512 m a.s.l.) and the presence of the
nearby Brokopondo lake (also called Prof. Dr. Bloomstein lake) may potentially impact
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our methane measurements. So while the measurements at Brownsberg (512 m a.s.l.),
resemble tower type measurements with respect to the surrounding rainforest, overall
the situation presents a less than ideal site for flux measurements. Still for the sake
of discussion, if we assume that methane was well mixed within the NBL and that the
NBL height over the rain forest was 100 m at ∼19:45 LT and 200 m at ∼05:45 LT, then5

applying the method described in Sect. 3.3.3, we would derive a night time emission
flux of 3.77×1011 molecules cm−2 s−1. Since, vertical potential temperature profiles
and meteorological data of the type used for the Hyytiäla site measurements were not
available for the tropical forest site, the tropical methane flux has a greater uncertainty
and this flux must be interpreted with appropriate care. Previous measurements from10

the upland forest area (1.5×106 km2) of the Amazon region, by Carmo et al. (2006)
have suggested a flux range of 0.96–9.1×1011 molecules cm−2 s−1( or 4–38 Tg yr−1)
which is lower than the flux of ∼1.2×1012molecules cm−2 s−1 reported recently by Miller
et al. (2007) referring to the eastern Amazon basin.

5 Conclusion and outlook15

The boreal forest ecosystem as a whole is a significant source of methane
(∼45.5±11 Tg CH4 yr−1) and appears to contribute circa 7.5% to the global methane
budget. High temporal resolution measurements, from the boreal forest and tropi-
cal forest ecosystems, made over longer time periods are needed to assess methane
emissions from these regions more accurately, because based on the short term data20

presented in this work, it appears that boreal forest ecosystem emissions may be
currently underestimated, as SCHIAMACHY data for the same period over Hyytiäla
showed methane mixing ratios of 1.75µmol mol−1, while our in-situ measurements
were 1.83µmol mol−1 and the methane flux reported in Bergamaschi et al. (2007) of
1.74×1011 molecules cm2 s−1 was lower than the flux of 3.62×1011 molecules cm2 s−1,25

obtained in this study. Collectively, the nighttime emissions from boreal and tropical
forest ecosystems indicate a global source contribution of circa 100 Tg CH4 yr−1, which
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is almost 17% of the global budget of circa 600 Tg CH4 yr−1. The similarity in the diel
methane profiles at such widely different climates is remarkable. Until the mechanism
of methane production from plants under aerobic conditions, is better understood, ex-
amining net ecosystem fluxes under in-situ natural conditions, would help in constrain-
ing the contribution due to a potential new vegetation source and assessing whether5

their magnitude is of the order of uncertainties in the existing sources, or higher. Al-
though our methane flux estimates refer to nighttime conditions only, whereas aerobic
methane production is expected to be larger during daytime, our observations cannot
be reconciled with a very large direct methane source of up to 176–236 Tg/yr from the
vegetation.10

Furthermore, 13C isotope measurements can help to apportion the methane sources
in a better manner and thus a combined approach of in-situ measurements at suitable
remote and homogeneous sites, remote sensing retrievals and isotope studies would
help to reduce the uncertainties in the global methane budget much more effectively.

Acknowledgements. We acknowledge M. Kulmala, P. Aalto, L. Kulmala, N. Pimenoff and15

other members of the Kulmala group at the University of Helsinki for the meteorological and
balloon soundings’ data and Laurens Ganzeveld for helpful discussions. The authors also
thank B. Scheeren and members of the ORSUM group, in particular T. Kluepfel, R. Hofmann,
G. Eerdekens, and N. Yassaa for field assistance.

References20

Bartlett, K. and Harriss, R.: Review and assessment of methane emissions from wetlands,
Chemosphere, 26, 261–320, 1993.

Bergamaschi, P., Frankenberg, C., Meirink, J. F., Krol, M., Dentener, F., Wagner, T., and
Platt, U.: Satellite chartography of atmospheric methane from SCIAMACHY on board EN-
VISAT:2. Evaluation based on inverse model simulations, J. Geophys. Res., 112, D02304,25

doi:10.1029/2006JD007268, 2007.
Bergstrom, I., Makelab, S., Kankaalab, P., and Kortelainen, P.: Methane efflux from littoral

14027

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/7/14011/2007/acpd-7-14011-2007-print.pdf
http://www.atmos-chem-phys-discuss.net/7/14011/2007/acpd-7-14011-2007-discussion.html
http://www.egu.eu


ACPD
7, 14011–14039, 2007

Methane
measurements in

Tropical and Boreal
forests

V. Sinha et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

vegetation stands of southern boreal lakes: An upscaled regional estimate, Atmos. Environ.,
doi:10.1016/j.atmosenv.2006.08.014, 2006.

Butenhoff, C. L. and Khalil, M. A. K., Global methane emissions from terrestrial plants: Environ.
Sci. Technol., 41, 4032–4037, 2007.

Carmo, J. B., Keller, M., Dias, J. D., Camargo, P. B., and Crill P.: A source of5

methane from upland forests in the Brazilian Amazon, Geophys. Res. Lett., 33, L04809,
doi:10.1029/2005GL025436, 2006.

Crutzen, P. J., Sanhueza, E., and Brenninkmeijer, C. A. M.: Methane production from mixed
tropical savanna and forest vegetation in Venezuela, Atmos. Chem. Phys. Discuss., 6, 3093–
3097, http://www.atmos-chem-phys-discuss.net/6/3093/2006/, 2006.10

Dueck, T. A., Visser, R., Poorter, H., et al.: No evidence for substantial aerobic methane emis-
sion by terrestrial plants: a 13 C-labelling approach: New Phytologist, doi: 10.1111/j.1469-
8137.2007.02103.x, 2007.

Drebs, A., Nordlund, A., Karlsson, P., Helminen, J., and Rissanen, P.: Climatological statistics of
Finland 1971–2000, Finnish Meteorological Institute, Helsinki, 99 pp, ISBN 951-697-568-2,15

2002.
Ferretti, D. F., Miller, J. B., White, J. W. C., Lassey, K. R., Lowe, D. C., and Etheridge, D.

M.: Stable isotopes provide revised global limits of aerobic methane emissions from plants,
Atmos. Chem. Phys., 7, 237–241, 2006, http://www.atmos-chem-phys.net/7/237/2006/.

Frankenberg, C., Meirink, J. F., van Weele, M., Platt, U., and Wagner, T.: Assessing methane20

emissions from global space-borne observations, Science, 308, 1010–1014, 2005.
Frankenberg, C., Meirink, J. F., Bergamaschi, P., Goede, A. P. H., Heimann, M., Korner, S.,

Platt, U., van Weele, M., and Wagner, T.: Satellite chartography of atmospheric methane
from SCIAMACHY on board ENVISAT: Analysis of the years 2003 and 2004, J. Geophys.
Res., 111, D07303, doi:10.1029/2005JD006235, 2006.25

Haapanala, S., Rinne, J., Hakola, H., Hellen, H., Laakso, L., Lihavainen, H., Janson, R.,
O’Dowd, C., and Kulmala, M., Boundary layer concentrations and landscape scale emis-
sions of volatile organic compounds in early spring: Atmos. Chem. Phys., 7, 1869–1878,
2007, http://www.atmos-chem-phys.net/7/1869/2007/.

Hari, P. and Kulmala, M.: Station for measuring ecosystem-atmosphere relations (SMEAR II),30

Boreal Environ. Res., 5, 315–322, 2005.
Houweling, S., Rockmann, T., Aben, I., Keppler, F., Krol, M., Meirink, J. F., Dlugokencky, E. J.,

and Frankenberg , C.: Atmospheric constraints on global emissions of methane from plants,

14028

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/7/14011/2007/acpd-7-14011-2007-print.pdf
http://www.atmos-chem-phys-discuss.net/7/14011/2007/acpd-7-14011-2007-discussion.html
http://www.egu.eu
http://www.atmos-chem-phys.net/7/237/2006/
http://www.atmos-chem-phys.net/7/1869/2007/


ACPD
7, 14011–14039, 2007

Methane
measurements in

Tropical and Boreal
forests

V. Sinha et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

Geophys. Res. Lett., 33, L15821, doi:10.1029/2006GL026162, 2006.
Keppler, F., Hamilton, J. T. G., Brass, M., and Roeckmann, T.: Methane emissions from terres-

trial plants under aerobic conditions, Nature, 439, 187–191, 2006.
Kirschbaum, M. U. F., Bruhn, D., Etheridge, D. M., Evans, J. R., Farquhar, G. D., Gifford, R.

M., Paul, K. I., and Winters, A. J.: A comment on the quantitative significance of aerobic5

methane release by plants, Funct. Plant. Biol., 33, 521–530, 2006.
Khalil, M. A. K.: Atmospheric methane: an introduction, in: Atmospheric Methane: Its Role in

the Global Environment, edited by: M. Khalil, p.p. 1–8, Springer-Verlag, New York, NY, 2000.
Krejci, R., Strom, J., de Reus, M., Williams, J., Fischer, H., Andreae, M. O., and Hansson, H.

C.: Spatial and temporal distribution of atmospheric aerosols in the lowermost troposphere10

over the Amazonian tropical rainforest, Atmos. Chem. Phys., 5, 1527–1543, 2005,
http://www.atmos-chem-phys.net/5/1527/2005/.

Kulmala, M., Suni, T., Lehtinen K. E. J., Dal Maso, M., Boy, M., Reissell, A., Rannik, Ü., Aalto,
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Table 1. Boundary layer heights at Hyytiäla (61◦51′ N, 24◦17′ E, 170 m a.s.l.)

Date Time (LT) B.L.Height (m)

24 April 19:45 80
25 April 05:45 160
25 April 19:30 70
26 April 05:35 190
27 April 20:00 90
28 April 05:50 210
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(a)

(b)

Fig. 1. View of boreal forest vegetation in Hyytiäla (61◦51′ N, 24◦ 17′ E, 170 m a.s.l.) (above) (a)
and view of tropical forest vegetation in Brownsberg (4◦ 56′ N, 55◦10′ W, 514 m a.s.l.) (below)
(b).

14033

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/7/14011/2007/acpd-7-14011-2007-print.pdf
http://www.atmos-chem-phys-discuss.net/7/14011/2007/acpd-7-14011-2007-discussion.html
http://www.egu.eu


ACPD
7, 14011–14039, 2007

Methane
measurements in

Tropical and Boreal
forests

V. Sinha et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

Fig. 2. Wind rose plot showing methane (coloured markers and scale), wind speed (radii)
and wind direction (angle) in Hyytiäla during the campaign (Map courtesy of Google EarthTM

mapping service)
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Fig. 3. Box and whisker plot for diel cycle of filtered methane data (315◦–45◦ wind sector) from
Hyytiäla (61◦51′ N, 24◦17′ E, 170 m a.s.l.), Finland during the BACCI/QUEST III Campaign.
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Fig. 4. Box and whisker plot for diel cycle of methane data from Brownsberg (4◦ 56′ N, 55◦10′ W,
514 m a.s.l.), Suriname during the GABRIEL campaign.
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Fig. 5a.Typical example for determination of boundary layer height at Hyytiäla (61◦51′ N, 24◦

17′ E, 170 m a.s.l.) using several physical parameters (above) and potential temperature profile
(below).
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Fig. 5b.Typical example for determination of boundary layer height at Hyytiäla (61◦51′ N, 24◦

17′ E, 170 m a.s.l.) using several physical parameters (above) and potential temperature profile
(below).
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Fig. 6. Assessing vertical gradients in the NBL at Hyytiäla (61◦51′ N, 24◦ 17′ E, 170 m a.s.l.)
using CO2 profiles.
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