Atmos. Chem. Phys. Discuss., 7, 12463-12539, 2007
www.atmos-chem-phys-discuss.net/7/12463/2007/
doi:10.5194/acpd-7-12463-2007
© Author(s) 2007. This work is licensed under the
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.
Review Status
This discussion paper has been under review for the journal Atmospheric Chemistry and Physics (ACP). Please refer to the corresponding final paper in ACP.
Validation of the Atmospheric Chemistry Experiment (ACE) version 2.2 temperature using ground-based and space-borne measurements
R. J. Sica1, M. R. M. Izawa2, K. A. Walker3,4, C. Boone3, S. V. Petelina5,6, P. S. Argall1, P. Bernath3,7, G. B. Burns8, V. Catoire9, R. L. Collins10, W. H. Daffer11, C. De Clercq12, Z. Y. Fan3, B. J. Firanski13, W. J. R. French8, P. Gerard12, M. Gerding14, J. Granville12, J. L. Innis8, P. Keckhut15, T. Kerzenmacher4, A. R. Klekociuk8, E. Kyrö16, J. C. Lambert12, E. J. Llewellyn5, G. L. Manney17,18, I. S. McDermid19, K. Mizutani20, Y. Murayama20, C. Piccolo21, P. Raspollini22, M. Ridolfi23, C. Robert9, W. Steinbrecht24, K. B. Strawbridge13, K. Strong4, R. Stübi25, and B. Thurairajah10
1Department of Physics and Astronomy, The University of Western Ontario, London, Ontario, Canada
2Department of Earth Sciences, The University of Western Ontario, London, Ontario, Canada
3Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada
4Department of Physics, University of Toronto, Ontario, Canada
5Institute of Space and Atmospheric Studies, University of Saskatchewan, Saskatoon, Canada
6Department of Physics, La Trobe University, Victoria, Australia
7Department of Chemistry, University of York, UK
8Ice, Ocean, Atmosphere and Climate Program, Australian Antarctic Division, Kingston, Tasmania, Australia
9Laboratoire de Physique et Chimie de l’Environnement, CNRS – Universite d’Orleans, France
10Geophysical Institute and Atmospheric Sciences Program, University of Alaska Fairbanks, Alaska
11Columbus Technologies Inc., Pasadena, California, USA
12Institut d’Aeronomie Spatiale de Belgique (IASB-BIRA), Brussels, Belgium
13Science and Technology Branch, Environment Canada, CARE, Egbert, Ontario, Canada
14Leibniz-Institute of Atmospheric Physics, K¨uhlungsborn, Germany
15Service d’A´eronomie, Institut Pierre Simon Laplace-UVSQ, Verrires-le-Buisson, France
16Finnish Meteorological Institute – Arctic Research Centre, Sodankylä, Finland
17Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
18New Mexico Institute of Mining and Technology, Socorro, New Mexico, USA
19Jet Propulsion Laboratory, California Institute of Technology, Table Mountain Facility, Wrightwood, California, USA
20National Institute of Information and Communications Technology, Tokyo, Japan
21Department of Atmospheric, Oceanic and Planetary Physics, Clarendon Laboratory, Oxford, UK
22Istituto di Fisica Applicata ’Nello Carrara’ (IFAC) del Consiglio Nazionale delle Ricerche (CNR), Sesto Fiorentino, Firenze, Italy
23Dip. di Chimica Fisica e Inorganica, University of Bologna, Bologna, Italy
24Deutsche Wetterdienst (DWD), Hohenpeissenberg Observatory, Germany
25Federal Office of Meteorology and Climatology, MeteoSwiss Aerological Station, Payerne, Switzerland

Abstract. An ensemble of space-borne and ground-based instruments has been used to evaluate the quality of the version 2.2 temperature retrievals from the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS). The agreement of ACE-FTS temperatures with other sensors is typically better than 2 K in the stratosphere and upper troposphere and 5 K in the lower mesosphere. There is evidence of a systematic high bias (roughly 3–6 K) in the ACE-FTS temperatures in the mesosphere, and a possible systematic low bias (roughly 2 K) in ACE-FTS temperatures near 23 km. Some ACE-FTS temperature profiles exhibit unphysical oscillations, a problem fixed in preliminary comparisons with temperatures derived using the next version of the ACE-FTS retrieval software. Though these relatively large oscillations in temperature can be on the order of 10 K in the mesosphere, retrieved volume mixing ratio profiles typically vary by less than a percent or so. Statistical comparisons suggest these oscillations occur in about 10% of the retrieved profiles. Analysis from a set of coincident lidar measurements suggests that the random error in ACE-FTS version 2.2 temperatures has a lower limit of about ±2 K.

Citation: Sica, R. J., Izawa, M. R. M., Walker, K. A., Boone, C., Petelina, S. V., Argall, P. S., Bernath, P., Burns, G. B., Catoire, V., Collins, R. L., Daffer, W. H., De Clercq, C., Fan, Z. Y., Firanski, B. J., French, W. J. R., Gerard, P., Gerding, M., Granville, J., Innis, J. L., Keckhut, P., Kerzenmacher, T., Klekociuk, A. R., Kyrö, E., Lambert, J. C., Llewellyn, E. J., Manney, G. L., McDermid, I. S., Mizutani, K., Murayama, Y., Piccolo, C., Raspollini, P., Ridolfi, M., Robert, C., Steinbrecht, W., Strawbridge, K. B., Strong, K., Stübi, R., and Thurairajah, B.: Validation of the Atmospheric Chemistry Experiment (ACE) version 2.2 temperature using ground-based and space-borne measurements, Atmos. Chem. Phys. Discuss., 7, 12463-12539, doi:10.5194/acpd-7-12463-2007, 2007.
 
Search ACPD
Discussion Paper
    XML
    Citation
    Final Revised Paper
    Share