Atmos. Chem. Phys. Discuss., 7, 12231-12288, 2007
www.atmos-chem-phys-discuss.net/7/12231/2007/
doi:10.5194/acpd-7-12231-2007
© Author(s) 2007. This work is licensed under the
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.
Review Status
This discussion paper has been under review for the journal Atmospheric Chemistry and Physics (ACP). Please refer to the corresponding final paper in ACP.
An episode of extremely high PM concentrations over Central Europe caused by dust emitted over the southern Ukraine
W. Birmili1, K. Schepanski1,2, A. Ansmann1, G. Spindler1, I. Tegen1, B. Wehner1, A. Nowak1, E. Reimer3, I. Mattis1, K. Müller1, E. Brüggemann1, T. Gnauk1, H. Herrmann1, A. Wiedensohler1, D. Althausen1, A. Schladitz1, T. Tuch1,4, and G. Löschau5
1Leibniz Institute for Tropospheric Research, Leipzig, Germany
2Leibniz Institute of Marine Sciences, IFM-GEOMAR, Kiel, Germany
3Institut für Meteorologie, Freie Universität Berlin, Germany
4Helmholtz Center for Environmental Research, Leipzig, Germany
5Sächsisches Landesamt für Umwelt und Geologie, Dresden, Germany

Abstract. On 24 March 2007, the atmosphere over Central Europe was affected by an episode of exceptionally high mass concentrations of aerosol particles, most likely caused by a dust storm in the Southern Ukraine on the preceding day. At ground-based measurement stations in Slovakia, the Czech Republic, Poland and Germany PM10 mass concentrations rose to values between 200 and 1400 μg m−3. An evaluation of PM10 measurements from 360 monitoring stations showed that the dust cloud advanced along a narrow corridor at speeds of up to 70 km h−1. According to lidar observations over Leipzig, Germany, the high aerosol concentrations were confined to a homogeneous boundary layer of 1800 m height. The wavelength dependence of light extinction using both lidar and sun photometer measurements suggested the dominance of coarse particles during the main event. At a wavelength of 532 nm, relatively high volume extinction coefficients (300–400 Mm−1) and a particle optical depth of 0.65 was observed. In-situ measurements with an aerodynamic particle sizer at Melpitz, Germany, confirmed the presence of a coarse particle mode with a mode diameter >2 μm, whose maximum concentration coincided with that of PM10. A chemical particle analysis confirmed the dominance of non-volatile and insoluble matter in the coarse mode as well as high enrichments of Ti and Fe, which are characteristic of soil dust. A combination of back trajectory calculations and satellite images allowed to identify the dust source with confidence: On 23 March 2007, large amounts of dust were emitted from dried-out farmlands in the southern Ukraine, facilitated by wind gusts up to 100 km h−1. The unusual vertical stability and confined height of this dust layer as well as the rapid transport under dry conditions led to the conservation of high aerosol mass concentrations along the transect and thus to the extraordinary high aerosol concentrations over Central Europe. Our observations demonstrate the capacity of a combined apparatus of in situ and remote sensing measurements to characterise such a dust with a variety of aerosol parameters. As a conclusion, the description of dust emission, transport and transformation processes needs to be improved, especially when facing the possible effects of further anthropogenic desertification and climate change.

Citation: Birmili, W., Schepanski, K., Ansmann, A., Spindler, G., Tegen, I., Wehner, B., Nowak, A., Reimer, E., Mattis, I., Müller, K., Brüggemann, E., Gnauk, T., Herrmann, H., Wiedensohler, A., Althausen, D., Schladitz, A., Tuch, T., and Löschau, G.: An episode of extremely high PM concentrations over Central Europe caused by dust emitted over the southern Ukraine, Atmos. Chem. Phys. Discuss., 7, 12231-12288, doi:10.5194/acpd-7-12231-2007, 2007.
 
Search ACPD
Discussion Paper
    XML
    Citation
    Final Revised Paper
    Share