Atmos. Chem. Phys. Discuss., 7, 10543-10588, 2007
© Author(s) 2007. This work is licensed under the
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.
Review Status
This discussion paper has been under review for the journal Atmospheric Chemistry and Physics (ACP). Please refer to the corresponding final paper in ACP.
Short- and medium-term atmospheric effects of very large solar proton events
C. H. Jackman1, D. R. Marsh2, F. M. Vitt2, R. R. Garcia2, E. L. Fleming1, G. J. Labow1, C. E. Randall3, M. López-Puertas4, and B. Funke4
1NASA/Goddard Space Flight Center, Greenbelt, MD, USA
2National Center for Atmospheric Research, Boulder, CO, USA
3University of Colorado, Boulder, CO, USA
4Instituto de-Astrofisica de Andalucia, CSIC, Granada, Spain

Abstract. Solar eruptions sometimes produce protons, which impact the Earth's atmosphere. These solar proton events (SPEs) generally last a few days and produce high energy particles that precipitate into the Earth's atmosphere. The protons cause ionization and dissociation processes that ultimately lead to an enhancement of odd-hydrogen and odd-nitrogen in the polar cap regions (>60° geomagnetic latitude). We have used the Whole Atmosphere Community Climate Model (WACCM3) to study the atmospheric impact of SPEs over the period 1963–2005. The very largest SPEs were found to be the most important and caused atmospheric effects that lasted several months to years after the events. We present the short- and medium-term (days to a few months) atmospheric influence of the four largest SPEs in the past 45 years (August 1972; October 1989; July 2000; and October–November 2003) as computed by WACCM3 and observed by satellite instruments. The polar effects can be summarized as follows: 1) Mesospheric NOx (NO+NO2) increased by over 50 ppbv and mesospheric ozone decreased by over 30% during these very large SPEs; 2) upper stratospheric and lower mesospheric NOx increased by over 10 ppbv and was transported during polar night down to the middle stratosphere in a few weeks; 3) mid- to upper stratospheric ozone decreased over 20%; and 4) enhancements of HNO3, HOCl, ClO, ClONO2, and N2O5 were indirectly caused by the very large SPEs, although the model results suggest impacts at higher altitudes than indicated by the measurements for the October–November 2003 SPE period.

Citation: Jackman, C. H., Marsh, D. R., Vitt, F. M., Garcia, R. R., Fleming, E. L., Labow, G. J., Randall, C. E., López-Puertas, M., and Funke, B.: Short- and medium-term atmospheric effects of very large solar proton events, Atmos. Chem. Phys. Discuss., 7, 10543-10588, doi:10.5194/acpd-7-10543-2007, 2007.
Search ACPD
Discussion Paper
    Final Revised Paper