Atmos. Chem. Phys. Discuss., 6, 8241-8284, 2006
www.atmos-chem-phys-discuss.net/6/8241/2006/
doi:10.5194/acpd-6-8241-2006
© Author(s) 2006. This work is licensed under the
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.
Review Status
This discussion paper has been under review for the journal Atmospheric Chemistry and Physics (ACP). Please refer to the corresponding final paper in ACP.
Mesoscale modelling of water vapour in the tropical UTLS: two case studies from the HIBISCUS campaign
V. Marécal1, G. Durry2,3, K. Longo4, S. Freitas4, E. D. Rivière2, and M. Pirre1
1Laboratoire de Physique et Chimie de l’Environnement, CNRS and Université d’Orléans, 3A Avenue de la Recherche Scientifique, 45071 Orléans cedex 2, France
2Groupe de Spectroscopie Moléculaire et Atmosphérique, CNRS and Université de Reims, Moulin de la Housse, B.P. 1039, 51687 Reims Cedex, France
3Service d’Aéronomie, CNRS and Institut Pierre Simon Laplace, 91371 Verrières-le-Buisson Cedex, France
4Centro de Previsࢳo de Tempo e Estudos Climàticos, Rodovia Presidente Dutra, km 40 SPRJ 12630-000, Cachoeira Paulista – SP, Brazil

Abstract. In this study, we evaluate the ability of the BRAMS mesoscale model compared to ECMWF global analysis to simulate the observed vertical variations of water vapour in the tropical upper troposphere and lower stratosphere (UTLS). The observations are balloon-borne measurements of water vapour mixing ratio and temperature from micro-SDLA (Tunable Diode Laser Spectrometer) instrument. Data from two balloon flights performed during the 2004 HIBISCUS field campaign are used to compare with the mesoscale simulations and to ECMWF analysis.

The mesoscale model performs significantly better than ECMWF analysis for water vapour in the upper troposphere and similarly or slightly worse for temperature. The improvement provided by the mesoscale model for water vapour comes mainly from (i) the enhanced vertical resolution in the UTLS (250 m for BRAMS and ~1 km for ECMWF model) and (ii) the more detailed microphysical parameterization providing ice supersaturations as in the observations. The ECMWF vertical resolution (~1 km) is too coarse to capture the observed fine scale vertical variations of water vapour in the UTLS. In near saturated or supersaturated layers, the mesoscale model relative humidity with respect to ice saturation is close to observations provided that the temperature profile is realistic. For temperature, ECMWF analysis gives good results partly thanks to data assimilation. The analysis of the mesoscale model results showed that in undersaturated layers, the water vapour profile depends mainly on the dynamics. In saturated/supersaturated layers, microphysical processes play an important role and have to be taken into account on top of the dynamical processes to understand the water vapour profiles.

In the lower stratosphere, the ECMWF model and the BRAMS model give very similar water vapour profiles that are significantly dryer than micro-SDLA measurements. This similarity comes from the fact that BRAMS is initialised using ECMWF analysis and that no mesoscale process acts in the stratosphere leading to no modification of the BRAMS results with respect to ECMWF analysis.


Citation: Marécal, V., Durry, G., Longo, K., Freitas, S., Rivière, E. D., and Pirre, M.: Mesoscale modelling of water vapour in the tropical UTLS: two case studies from the HIBISCUS campaign, Atmos. Chem. Phys. Discuss., 6, 8241-8284, doi:10.5194/acpd-6-8241-2006, 2006.
 
Search ACPD
Discussion Paper
    XML
    Citation
    Final Revised Paper
    Share