Atmos. Chem. Phys. Discuss., 5, 7965-8026, 2005
www.atmos-chem-phys-discuss.net/5/7965/2005/
doi:10.5194/acpd-5-7965-2005
© Author(s) 2005. This work is licensed under the
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.
Review Status
This discussion paper has been under review for the journal Atmospheric Chemistry and Physics (ACP). Please refer to the corresponding final paper in ACP.
Simulating aerosol microphysics with the ECHAM/MADE GCM – Part I: Model description and comparison with observations
A. Lauer1, J. Hendricks1, I. Ackermann1, B. Schell2, H. Hass2, and S. Metzger3
1DLR Institute of atmospheric physics, Oberpfaffenhofen, Wessling, Germany
2Ford Research Center Aachen, Aachen, Germany
3Max Planck Institute for Chemistry, Mainz, Germany

Abstract. The aerosol dynamics module MADE has been coupled to the general circulation model ECHAM4 to simulate the chemical composition, number concentration, and size distribution of the global submicrometer aerosol. The present publication describes the new model system ECHAM4/MADE and presents model results in comparison with observations. The new model is able to simulate the full life cycle of particulate matter and various gaseous precursors including emissions of primary particles and trace gases, advection, convection, diffusion, coagulation, condensation, nucleation of sulfuric acid vapor, aerosol chemistry, cloud processing, and size-dependent dry and wet deposition. Aerosol components considered are sulfate (SO4), ammonium (NH4), nitrate (NO3), black carbon (BC), particulate organic matter (POM), sea salt, mineral dust, and aerosol liquid water. The model is numerically efficient enough to allow long term simulations, which is an essential requirement for application in general circulation models.

In order to evaluate the results obtained with this new model system, calculated mass concentrations, particle number concentrations, and size distributions are compared to observations. The intercomparison shows, that ECHAM4/MADE is able to reproduce the major features of the geographical patterns, seasonal cycle, and vertical distributions of the basic aerosol parameters. In particular, the model performs well under polluted continental conditions in the northern hemispheric lower and middle troposphere. However, in comparatively clean remote areas, e.g. in the upper troposphere or in the southern hemispheric marine boundary layer, the current model version tends to underestimate particle number concentrations.


Citation: Lauer, A., Hendricks, J., Ackermann, I., Schell, B., Hass, H., and Metzger, S.: Simulating aerosol microphysics with the ECHAM/MADE GCM – Part I: Model description and comparison with observations, Atmos. Chem. Phys. Discuss., 5, 7965-8026, doi:10.5194/acpd-5-7965-2005, 2005.
 
Search ACPD
Discussion Paper
    XML
    Citation
    Final Revised Paper
    Share