Atmos. Chem. Phys. Discuss., 4, 6239-6281, 2004
www.atmos-chem-phys-discuss.net/4/6239/2004/
doi:10.5194/acpd-4-6239-2004
© Author(s) 2004. This work is licensed under the
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.
Review Status
This discussion paper has been under review for the journal Atmospheric Chemistry and Physics (ACP). Please refer to the corresponding final paper in ACP.
The effects of lightning-produced NOx and its vertical distribution on atmospheric chemistry: sensitivity simulations with MATCH-MPIC
L. J. Labrador, R. von Kuhlmann, and M. G. Lawrence
Max-Planck Institute for Chemistry, Mainz, Germany

Abstract. The impact of different assumptions concerning the source magnitude as well as the vertical placement of lightning-produced nitrogen oxides is studied using the global chemistry transport model MATCH-MPIC. The responses of NOx, O3, OH, HNO3 and peroxyacetyl-nitrate (PAN) are investigated. A marked sensitivity to both parameters was found. NOx burdens globally can be enhanced up to 100% depending on the vertical placement and source magnitude strength. In all cases, the largest enhancements occur in the tropical upper troposphere, where lifetimes of most trace gases are longer and where they thus become more susceptible to long-range transport by long-range circulation patterns. Comparison with observations indicate that the 0 and 20 Tg/yr(N) production rates of NOx from lightning are too low and too high a source magnitude, respectively. However, no single intermediate production rate or vertical distribution can be singled out as best fitting the observations due to the large scatter in the datasets. This underscores the need for further measurement campaigns in key regions. The vertical profiles of Pickering et al. (1998) have been implemented in MATCH-MPIC for this study.

Citation: Labrador, L. J., von Kuhlmann, R., and Lawrence, M. G.: The effects of lightning-produced NOx and its vertical distribution on atmospheric chemistry: sensitivity simulations with MATCH-MPIC, Atmos. Chem. Phys. Discuss., 4, 6239-6281, doi:10.5194/acpd-4-6239-2004, 2004.
 
Search ACPD
Discussion Paper
    XML
    Citation
    Final Revised Paper
    Share