Influence of mineral dust and sea spray supermicron particle concentrations and acidity on inorganic NO_3^- aerosol during the 2013 Southern Oxidant and Aerosol Study

H. M. Allen1,*, D. C. Draper1,**, B. R. Ayres1, A. Ault2,3, A. Bondy2, S. Takahama4, R. L. Modini4, K. Baumann5, E. Edgerton5, C. Knote6, A. Laskin7, B. Wang7, and J. L. Fry1

1Department of Chemistry, Reed College, Portland, OR, USA
2Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
3Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA
4École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
5Atmospheric Research \\& Analysis, Inc., Cary, NC, USA
6Meteorologisches Institut, Ludwig-Maximilians-Universität, Munich, Germany
7William R. Wiley Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
Inorganic NO$_3^-$ aerosol during the 2013 SOAS campaign

H. M. Allen et al.

now at: Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA

now at: Department of Chemistry, University of California, Irvine, CA, USA

Received: 28 February 2015 – Accepted: 24 April 2015 – Published: 13 May 2015

Correspondence to: J. L. Fry (fry@reed.edu)

Published by Copernicus Publications on behalf of the European Geosciences Union.
Abstract

The inorganic aerosol composition was measured in the southeastern United States, a region that exhibits high aerosol mass loading during the summer, as part of the 1 June to 15 July 2013 Southern Oxidant and Aerosol Study (SOAS) campaign. Measurements using a Monitor for AeRosols and GAses (MARGA), an ion chromatograph coupled with a wet rotating denuder and a steam-jet aerosol collector for monitoring of ambient inorganic gas and aerosol species, revealed two periods of high aerosol nitrate (NO$_3^-$) concentrations during the campaign. These periods of high nitrate were correlated with increased concentrations of coarse mode mineral or sea spray aerosol species, particularly Na$^+$ and Ca$^{2+}$, and with a shift towards aerosol with larger (1 to 2.5 µm) diameters. We suggest this nitrate aerosol forms by multiphase reactions of HNO$_3$ and particles, reactions that are facilitated by transport of mineral dust and sea spray aerosol from a source within the United States. The observed high aerosol acidity prevents the formation of NH$_4$NO$_3$, the inorganic nitrogen species often dominant in fine-mode aerosol at higher pH. Calculation of the rate of the heterogeneous uptake of HNO$_3$ on mineral aerosol supports the conclusion that aerosol NO$_3^-$ is produced primarily by this process, and is likely limited by the availability of mineral dust surface area. Modeling of NO$_3^-$ and HNO$_3$ by thermodynamic equilibrium models (ISORROPIA II and E-AIM) reveals the importance of including mineral cations in the southeastern United States to accurately balance ion species and predict gas/aerosol phase partitioning.

1 Introduction

Aerosol optical thickness measurements using remote sensing techniques indicate a high concentration of aerosol in the atmosphere over the southeastern United States during the summer months (Portmann et al., 2009). These aerosols likely arise from the significant concentrations of regional inorganic pollutants such as sulfur dioxide, and
from the oxidation of high concentrations of biogenic volatile organic compounds from regional vegetation (Goldstein et al., 2009). Anthropogenic NO\textsubscript{x} (= NO and NO\textsubscript{2}) acts as an important precursor in the oxidation of biogenic volatile organic compounds that leads to aerosol formation. Global emissions of NO\textsubscript{x} and other anthropogenic nitrogen compounds have increased ten-fold in the last century and are expected to become a dominant pollutant in the near future as SO\textsubscript{2} concentrations decrease (Bauer et al., 2007; Doering et al., 2011), although NO\textsubscript{x} concentrations are gradually decreasing in the southeast United States due to improved emission control technology (Russell et al., 2012). Thus, characterization of NO\textsubscript{x} emissions and their relationship to aerosol formation can provide valuable constraints for atmospheric scientists seeking to understand the production of aerosol in the southeastern United States.

Aerosol NO\textsubscript{3}- forms in the atmosphere when NO\textsubscript{x}, emitted from high-temperature combustion processes in vehicle engines and industrial facilities, reacts with OH radicals to form HNO\textsubscript{3} (Seinfeld and Pandis, 2006). This reaction is considered the dominant sink of daytime NO\textsubscript{x}. Nighttime oxidation of NO\textsubscript{2} may form HNO\textsubscript{3} via a N\textsubscript{2}O\textsubscript{5} intermediate (Jacob, 1999). In addition, NO\textsubscript{x} can be oxidized in the aqueous phase following uptake into droplets or aqueous particles. After formation, HNO\textsubscript{3} dissociates in water droplets to produce aerosol NO\textsubscript{3}-. In the southeastern United States, NO\textsubscript{3}- typically comprises between 0.5 and 2 µg m-3 of the annual 13 to 18 µg m-3 total aerosol concentration (Blanchard and Hidy, 2003; Bauer et al., 2007). Yet HNO\textsubscript{3} is a semi-volatile species, and will readily partition between the gas and aerosol phases. As a result, the thermodynamic relationships governing aerosol NO\textsubscript{3}- concentrations are complex and highly dependent on the aerosol’s chemical composition. Furthermore, aqueous-phase reactions may recycle HNO\textsubscript{3} back to the gas phase, further complicating the partitioning (Wang and Laskin, 2014).

In a polluted atmosphere, the anthropogenically emitted gas phase species NO\textsubscript{x}, NH\textsubscript{3}, and SO\textsubscript{2} serve as precursors for the formation of inorganic aqueous aerosol containing NO\textsubscript{3}-, NH\textsubscript{4}+, and SO\textsubscript{4}2-. Gaseous NH\textsubscript{3} will react with HNO\textsubscript{3} and H\textsubscript{2}SO\textsubscript{4} to produce fine mode (< 1 µm diameter) NH\textsubscript{4}NO\textsubscript{3} and various forms of ammoniated sul-
fates such as (NH₄)₂SO₄, (NH₄)₃H(SO₄)₂, and NH₄HSO₄, which are considered the dominant forms of these ions in the atmosphere (Finlayson-Pitts and Pitts, 2000; Seinfeld and Pandis, 2006; Baker and Scheff, 2007). However, the formation of NH₄NO₃ is typically limited by the amount of NH₄⁺ available to neutralize both SO₄²⁻ and NO₃⁻ (Blanchard et al., 2000). In highly acidic environments, typically dominated by excess SO₄⁻, the semi-volatile NH₄NO₃ will dissociate (Stelson and Seinfeld, 1982):

$$\text{NH}_4\text{NO}_3(aq,s) \rightleftharpoons \text{NH}_3(g) + \text{HNO}_3(g) \quad (R1)$$

Under these conditions, nitrate aerosol may still be formed when HNO₃ undergoes heterogeneous chemistry on the reactive surfaces of coarse mode (> 1 µm diameter) aerosol, such as sea spray and mineral dust, which act as reactive sinks toward HNO₃ (Dentener et al., 1996; Zhuang et al., 1999; Underwood et al., 2001; Yeatman et al., 2001; Lee et al., 2008). In sea salt (primarily NaCl) aerosol, HNO₃ displaces the Cl⁻ ion to form NaNO₃ and gas phase HCl, resulting in aerosol chloride depletion (Brimblecombe and Clegg, 1988; Zhuang et al., 1999):

$$\text{NaCl}(aq,s) + \text{HNO}_3(g) \rightarrow \text{NaNO}_3(aq,s) + \text{HCl}(g) \quad (R2)$$

The multicomponent nature of sea spray means that analogous reactions may occur with other sea salt species, such as MgCl₂. Similarly, HNO₃ reacts with carbonates in mineral dust, such as CaCO₃ and CaMg(CO₃)₂, to form Ca(NO₃)₂ and Mg(NO₃)₂ (Laskin et al., 2005a; Gibson et al., 2006):

$$\text{CaCO}_3(aq,s) + 2\text{HNO}_3(g) \rightarrow \text{Ca(NO}_3)_2(aq,s) + \text{H}_2\text{O} + \text{CO}_2(g) \quad (R3)$$

$$\text{CaMg(CO}_3)_2(aq,s) + 4\text{HNO}_3(g) \rightarrow \text{Ca(NO}_3)_2(aq,s) + \text{Mg(NO}_3)_2(aq,s) + 2\text{H}_2\text{O} + 2\text{CO}_2(g) \quad (R4)$$

Sea spray and mineral dust have important implications for the total nitrogen budget, as these reactions facilitate a shift of NO₃⁻ from the fine mode to the coarse mode, and can enhance the amount of nitrate present in the aerosol. Globally, greater than 40 % of the total nitrate concentration is associated with mineral dust, and nearly all of the total nitrate may be coupled with coarse-mode mineral dust in regions exhibiting high
dust content (Usher et al., 2003). In addition, models of HNO₃ reactions on sea spray and mineral dust surfaces show that the equilibrium partitioning times are reached on the order of minutes, much faster than the deposition time of nitric acid in the air. As a result, more NO₃⁻ is retained in the aerosol phase at times of high sea spray and mineral dust concentrations and consequently, it is transported further than would otherwise occur in the atmosphere (Evans et al., 2004).

The present study seeks to understand the conditions under which inorganic nitrate aerosol formation occurs in the atmosphere in the southeastern United States. Measurements of inorganic aerosol and gas phase species were collected using ion chromatography, in an area of rural Alabama influenced by anthropogenic emissions. These measurements, coupled with airmass back trajectory analysis for source elucidation and with thermodynamic modeling, provide a glimpse into the fate of NOₓ emissions and the formation of nitrate aerosol under conditions in which NH₄NO₃ formation is unfavored.

2 Experimental

2.1 Site description

The Southern Oxidant and Aerosol Study (SOAS) field campaign took place from 1 June to 15 July 2013 as part of a multi-institutional effort to understand biosphere–atmosphere interactions in the southeastern United States. The site chosen for this study was located in the United States Forest Service’s National Talladega Forest near Centreville, Alabama (32.90289° N, 87.24968° W, and 126 m elevation). This site is part of the Southern Aerosol Research and Characterization network (SEARCH), which has been collecting data on EPA criteria gas and aerosol species since the early 1990s (http://www.atmospheric-research.com/studies/SEARCH/).

Due to its location in a heavily forested area, Centreville is primarily a rural site with high biogenic emissions from a mixture of conifer and deciduous trees. Proximity
to Birmingham, AL, located 71 km northeast of Centreville, causes the site to be influenced by elevated anthropogenic NOx emissions. In addition, numerous coal-fired power plants in the region, including four within an 80 km radius, generate high point source SO2 and NOx emissions that raise concentrations of these pollutants when the wind direction transports those plumes to the site (see Fig. S1 in the Supplement).

2.2 Aerosol and gas composition

2.2.1 Bulk composition analysis via Monitor for AeRosols and GAses (MARGA)

Inorganic gas and aerosol composition at the SOAS site was characterized using a Monitor for AeRosols and GAses (MARGA) (Metrohm Applikon BV, Netherlands). The MARGA is a semi-continuous ion chromatography instrument designed to measure ambient concentrations of inorganic particulate matter (PM) and gases. Species detected by MARGA include gas phase HCl, HNO3, HONO, NH3, and SO2, and particulate Cl−, NO3−, SO42−, NH4+, Na+, K+, Mg2+, and Ca2+. The MARGA inlet employs a wet rotating denuder (WRD) and a steam jet aerosol collector (SJAC), for collection of gases and particles respectively, in conjunction with cation and anion chromatography to report gas and aerosol concentrations at an hourly time resolution. The technique, including experimental detection limits, has been described in detail in Makkonen et al. (2012) and Rumsey et al. (2013). Table 1 presents a statistical summary of the MARGA measurements taken during the SOAS campaign.

At the SOAS ground site, ambient air was drawn through a PM10 (particles less than 10 µm in diameter) cyclone (Teflon coated, URG, Chapel Hill, NC), approximately 4 m a.g.l., at a flow rate of 16.7 standard liters per minute (sLpm). The sample air flowed through a 196 cm stretch of 2.70 cm inner diameter Teflon-coated aluminum at ambient temperature before reaching a PM2.5 (particles less than 2.5 µm in diameter) cyclone (Teflon coated, URG, Chapel Hill NC). A further 147 cm length of 0.95 cm inner diameter polyethylene tubing at shelter temperature, giving a total inlet volume of 1224 cm³ and a residence time of 4.4 s, brought the ambient air to the sample box. Once at
the sample box, the sample air passed through the WRD, in which absorption solution (10 ppm hydrogen peroxide, used as a biocide, in 18.2 MΩ deionized water) forms a thin aqueous film between two concentric rotating glass cylinders (Keuken et al., 1988). Water-soluble gasses diffuse into the absorbance solution while particles continue to the SJAC. The SJAC maintains a supersaturated environment with absorbance solution, in which particles activate and grow to micro-droplets and are then subsequently collected by inertial separation (Slanina et al., 2001).

Aqueous streams leading from the WRD and the SJAC accumulate for 60 min in separate 25 mL syringes. Once filled, the syringes inject the sample simultaneously with a 2.5 mM Li⁺ and Br⁻ (320 and 3680 µg L⁻¹, respectively) internal standard into a 250 µL anion and a 500 µL cation injection loop before reaching the ion columns. A Metrosep C4 (100 × 4.0 mm) cation column, in conjunction with 3.2 mmol L⁻¹ HNO₃ eluent and conductivity detector (Metrohm USA, Riverview, FL), separates and quantifies cationic species in the gas and the particle samples. Similarly, a Metrosep A Supp 10 (75 × 4.0 mm) column with Na₂CO₃–NaHCO₃ (7 and 8 mmol L⁻¹ respectively) eluent and conductivity detector is used for detection of anions. During analysis, a second set of syringes acts in tandem configuration to collect sample for the next hour. HNO₃ is used to regenerate the suppressor ion exchange columns after analysis of each sample.

2.2.2 Single particle analysis via CCSEM and EDX

Samples for single particle analysis were collected using a multiple orifice uniform deposition impactor (MOUDI, MSP Corp. Model 110) sampling at 30 L min⁻¹. Particles were impacted on 200 mesh Carbon Type B with Formvar grids (Ted Pella Inc.) for analysis by computer-controlled scanning electron microscope (CCSEM) measurements with an FEI Quanta environmental dual focused ion beam scanning electron microscopy (FIB/SEM) equipped with a field emission gun operating at 20 kV and a high angle annular dark field (HAADF) detector (Laskin et al., 2002, 2006, 2012). The instrument was equipped with an energy dispersive X-ray (EDX) spectrometer (EDAX, Inc.)
which allows X-ray detection of elements with atomic numbers higher than Be. For the SOAS field campaign, 43,784 particles were analyzed. The CCSEM automated analysis captured single-particle physical properties including average diameter, projected area, and perimeter. EDX spectra from individual particles were also collected to determine the relative abundance of 22 elements: C, N, O, Na, Mg, Al, Si, P, S, Cl, Ag, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Zn, and Hg. Interferences from the TEM grid (C and O) and the HAADF detector (Si) were present. N could not be quantified due to interference from C, O, and the Bremsstrahlung background.

Single-particle analysis from the CCSEM-EDX was performed in MATLAB R2013b (Mathworks, Inc.) using k-means clustering of the elemental composition following the method previously described in Ault et al. (2012). Clusters were grouped into source-based classes by elemental composition, including mineral dust and sea spray aerosol (SSA). Mineral dust particles were characterized by high fractions and intensities of Al and Si, along with other crustal elements including Mg, Ca, K, Ti, and Fe (Sobanska et al., 2003; Krueger et al., 2004; Laskin et al., 2005b; Coz et al., 2009). Sea spray aerosol particles were characterized by the presence of Na and Mg in an approximately 10 : 1 ratio (Culkin and Cox, 1976; Pilson, 1998), which is the ratio of the two cations in seawater, along with K and Ca at appropriate ratios when detected during the 10–15 s EDX spectrum collection during CCSEM analysis. The fingerprint to identify SSA is based on laboratory and field studies of seawater generated SSA using SEM (Hopkins et al., 2008; Laskin et al., 2012; Ault et al., 2013b), including after reaction with HNO_3 (Liu et al., 2007; Ault et al., 2013a). Mineral dust was identified through fingerprints from previous studies, including Al, Si, and cation peaks (Na, Mg, K, and Ca) (Edgerton et al., 2009; Ault et al., 2012). Biomass was identified by C, O, K, and S (Posfai et al., 2003; Li et al., 2003; Edgerton et al., 2009; Moffet et al., 2010, 2013). SOA (secondary organic aerosol) was composed of different combinations of C, N, O, and S, which will be discussed further in a forthcoming publication with Raman microspectroscopy analysis (Moffet et al., 2010, 2013). Fly ash was determined through a combination of composition and shape analysis (Edgerton et al., 2009; Ault et al., 2012). Industrial
particles contained transition or heavier metals (Utsunomiya et al., 2004). Biological particles contained a mix of K, Ca, P, C (very high levels), and O (Edgerton et al., 2009; Huffman et al., 2012; Moffet et al., 2013). Soot was identified through composition (C and O), as well as morphology (Edgerton et al., 2009).

2.2.3 Elemental analysis via XRF

Elemental analysis of PM$_{2.5}$ collected on Teflon filters was performed via Energy Dispersive X-Ray Fluorescence (XRF) using a PANalytical (Westborough, MA) Epsilon-5 ED-XRF spectrometer. The Epsilon-5 was calibrated with MicroMatter (Vancouver, BC) XRF single element calibration standards, which are prepared by vacuum deposition on a polycarbonate substrate, resulting in a uniform deposit of the element with a nominal loading of 50 ± 2.5 µg cm$^{-2}$. The results from the MicroMatter standards are then compared with the field samples containing 0.1–5 µg cm$^{-2}$ pollutant (Edgerton et al., 2005). The detection limits (LOD) were determined from field blank loadings assuming nominal sample volume of 24 m3. Measurement precision was estimated from routine replicate analysis and from the average RSD of triplicate analyses from a sub-set of samples collected during the study. Accuracy was assessed using NIST-2783 (Air Particulate on Filter Media) and internally generated standards using a research-grade deposition chamber and verification protocol employing ICP-MS (Kul/ARA 0802A18 QCCHK) (Kulkarni, 2010).

2.2.4 Particle size via SMPS and APS

Particle size distributions were measured over the diameter range 0.01–20 µm with a Scanning Mobility Particle Sizer (SMPS 0.01–0.7 µm diameter; TSI Inc., Shoreview, MN, model 3080 consisting of a TSI model 3081 DMA and TSI model 3772 CPC), and an Aerodynamic Particle Sizer (APS 0.5–20 µm diameter; TSI model 3321). The instruments were operated outdoors in a ventilated tent to ensure that the temperature (and therefore relative humidity and particle size) was near ambient conditions. Verti-
cally oriented, stainless steel tubes (length 1.4 m, OD 0.25 in, ID 0.18 in) connected the SMPS inlet (flow rate 1 Lpm) and inner APS inlet (flow rate 1 Lpm) to a common, stainless steel inlet with purpose-build rain hat above the tent. A particle density of 1 g cm$^{-3}$ and shape factor of 1 (corresponding to wet aerosols) were assumed for merging the SMPS and APS size distributions (Khlystov et al., 2004), and for calculating the integrated mass concentrations of PM$_1$ and PM$_{2.5}$.

2.2.5 Modeling via ISORROPIA and EAIM

ISORROPIA II, a thermodynamic equilibrium model for inorganic gases and aerosols in the atmosphere (available at http://isorropia.eas.gatech.edu) was employed to assess the equilibrium state of the aerosol found at Centreville, as well as to check the model’s ability to accurately capture gas-aerosol chemistry in the atmosphere at Centreville. Concentrations of inorganic species measured with an hourly time resolution by MARGA were input into the model as total (gas + aerosol) concentrations: SO$_4^{2-}$, HNO$_3$+NO$_3^-$, NH$_3$+NH$_4^+$, Na$^+$, HCl+Cl$^-$, Ca$^{2+}$, K$^+$, and Mg$^{2+}$, along with temperature and relative humidity (RH) measurements. Temperature and RH measurements were collected at 1 min resolution from the Atmospheric Research and Analysis, Inc. (ARA) SEARCH monitoring site collocated with the SOAS ground site at Centreville, using a MET4 sensor probe (Paroscientific Inc, Redmond, WA) with 0.1 °C and 0.8 % accuracy for temperature and RH, respectively (Hansen et al., 2003). The meteorological data was averaged to hourly increments to match the time resolution of MARGA measurements input into the model. ISORROPIA II was run in the “forward” mode in the thermodynamically stable state, in which the model repartitions the gas and aerosol phase species assuming thermodynamic equilibrium conditions and salts precipitate once the aqueous phase becomes saturated, in order to determine if each species would be present in the gas, aerosol, or solid phases (Fountoukis and Nenes, 2007). E-AIM (Extended Aerosol Inorganics Model; available at http://www.aim.env.uea.ac.uk/aim/aim.php) model IV was similarly employed (inputs of total gas + aerosol concentrations of SO$_4^{2-}$, HNO$_3$+NO$_3^-$, NH$_3$+NH$_4^+$, Na$^+$, and...
HCl+Cl\(^-\), temperature, and RH with the model configured to allow salts to precipitate once the aqueous solution becomes saturated), but does not include the mineral species Ca\(^{2+}\), K\(^+\), and Mg\(^{2+}\) (Wexler and Clegg, 2007). E-AIM simulations require ion balance of all analytes, thus any cation deficiency was balanced using inputs of H\(^+\). The sensitivity of the E-AIM model to variability in major analytes and to the ion balancing approach has been shown to be relatively minor (Young et al., 2013).

3 Results and discussion

3.1 Overview

During the SOAS campaign, HNO\(_3\) and NO\(_3^-\) concentrations were relatively low compared to other inorganic ions such as sulfate and ammonium. Figure 1 presents the time series of HNO\(_3\) and NO\(_3^-\) measurements between 1 June and 15 July 2013, along with subsets (Fig. 1b and c) indicating concentrations during periods of high NO\(_3^-\) concentrations. Gas phase HNO\(_3\) concentrations averaged 0.34 \(\mu g m^{-3}\) (0.14 ppb), with a maximum of 1.14 \(\mu g m^{-3}\) (0.46 ppm) and a minimum of 0 \(\mu g m^{-3}\) (0 ppm) (Table 1), and were typically highest during the early to late afternoon. The peak afternoon HNO\(_3\) concentrations likely resulted from the increase in temperature that occurs between nighttime to daytime, which enhances nitrate partitioning to the gas phase as HNO\(_3\). Aerosol NO\(_3^-\) exhibited an average concentration of 0.38 \(\mu g m^{-3}\), encompassed a range from 0.03 to 1.07 \(\mu g m^{-3}\) (Table 1), and typically peaked in the late morning to early afternoon. A separate collocated NO\(_3^-\)/HNO\(_3\) measurement observed higher daytime concentrations of HNO\(_3\), however, another measurement of HNO\(_3\) via Chemical Ionization Mass Spectrometry at the site measured concentrations more similar to those reported by the MARGA. The observed range of [HNO\(_3\)] does not substantially affect the conclusions of this analysis (Sect. 3.5); see Supplement for comparison of these datasets. The higher daytime aerosol phase nitrate concentrations indicate most NO\(_3^-\)
is likely formed from the reaction of NO₂ via the daytime oxidant, OH. N₂O₅, which produces nighttime HNO₃ via hydrolysis, was measured at the field site, but due to slow N₂O₅ hydrolysis rates and high concentrations of organics in the surrounding area, likely contributed little to HNO₃ formation (Ayres et al., 2015). Periods of high NO₃⁻ concentrations ended as significant rainfall (3.5 mm of rain on 13 June and 1.9 mm on 28 June) removed aerosol from the air.

The high acidity of aerosol in the atmosphere of the southeastern United States during the summer would be expected to suppress aerosol NO₃⁻ formation, as high acidity is indicative of an atmosphere deficient in the cations necessary to partition nitrate into the aerosol phase. The correlation of SO₄²⁻ with NH₄⁺ concentrations shows that the observed ammonium concentrations are insufficient to fully neutralize the existing sulfate (Fig. 2). Centreville is located in a region with numerous coal-fired power plants, leading to high concentrations of SO₄²⁻, with an observed summertime range of 0.50 to 8.87 µgm⁻³. Of the inorganic ions, SO₄²⁻ dominated the aerosol phase ionic composition and led to the highly acidic nature of the aerosol. The H⁺ concentration was calculated by subtracting total charge equivalents of anions from that of cations in µmolm⁻³:

\[
[H^+] = [Cl^- + NO_3^- + 2 \times SO_4^{2-}] - [Na^+ + NH_4^+ + K^+ + 2 \times Mg^{2+} + 2 \times Ca^{2+}] \tag{1}
\]

The average inferred H⁺ concentration at the site was 8.44 nmolm⁻³, with a range of 0.03 to 108.53 nmolm⁻³, indicating a cation-deficiency and therefore highly acidic aerosol. However, the variable effects of liquid water, the buffering action of HSO₄⁻/SO₄²⁻, and the effect of species activity coefficients prevents an accurate measure of pH from the H⁺ inferred by ion balance (Hennigan et al., 2015). The high acidity found in this study is in agreement with Guo et al. (2014), who report a mean pH of 0.94 ± 0.59 and a diurnal mean H⁺ concentration between 0.5 and 2.5 nmolm⁻³ at the SOAS ground site. This measured acidity is consistent with that of aerosol characterized as acidic in several other urban and non-urban studies (Koutrakis et al., 1988; Spengler et al., 1989; Brauer et al., 1991; Lee et al., 2008).
Modeling of the inorganic species by ISORROPIA II, which utilizes all inorganic species measured including minerals, produced an average predicted H\(^+\) concentration of 0.32 nmol m\(^{-3}\) and a range of < 0.00 to 12.00 nmol m\(^{-3}\) of H\(^+\), up to an order of magnitude lower than values inferred from MARGA measurements. The discrepancy between measured and modeled acidity likely arises from the difference between strong acidity (obtained by ion balance assuming full dissociation of acids as done with measurements above) and free acidity (obtained by calculating the extent of dissociation as provided by ISORROPIA II), as well as from differences in treatment of aerosol liquid water content and the H\(^+\) activity coefficient, which ion balance does not take into account (Hennigan et al., 2015). Hydrogen ion concentrations calculated by ion balance are often higher than those estimated by models due to these differences (Saxena et al., 1993; Guo et al., 2014).

As a result of the high acidity, most ammonium at the site will be associated with sulfate in fine mode aerosol. The formation of fine mode aerosol NO\(_3^-\) is therefore limited by the availability of any NH\(_4^+\) not already associated with sulfate, and nitrate will likely partition, given temperature and equilibria constraints, into the gas phase as HNO\(_3\). The observed high ratio of gas phase HNO\(_3\) to aerosol NO\(_3^-\) is consistent with these high acidity observations. However, as explored in the next section, NO\(_3^-\) aerosol was able to form in the coarse mode rather than fine mode due to the presence of other aerosol cation species.

3.2 Influence of mineral dust and sea spray on nitrate aerosol

Two periods occurred from 9–13 June (designated “coarse particle event 1”) and 23–28 June 2013 (designated “coarse particle event 2”), in which unusually high aerosol NO\(_3^-\) was observed. These two events correspond with an increase in mineral species such as Na\(^+\), Ca\(^{2+}\), Mg\(^{2+}\), and K\(^+\), suggesting aerosol NO\(_3^-\) is primarily driven by the availability of these cations and resides in the coarse mode (Fig. 3). NO\(_3^-\) concentrations track with variations in the concentrations of these minerals, enough of which are...
present to fully neutralize NO$_3^-$ on a charge equivalent basis (Fig. 3c). The observed trends of aerosol Na$^+$ and Ca$^{2+}$ support the conclusion that NO$_3^-$ is predominately formed by displacement reactions of NaCl, CaCO$_3$, and other similar species. Early in the study, particularly around 9 and 10 June, relatively high concentrations of Cl$^-$ were present with Na$^+$. Over a period of five days, Cl$^-$ gradually diminished in the aerosol while NO$_3^-$ concentrations increased (Fig. 3b). The reaction of HNO$_3$ on sea spray reaches equilibrium on the order of 5 to 20 min for particles between 1.0 and 3.2 µm in diameter (Evans et al., 2004), indicating that most coarse mode aerosol observed at the site had likely reached equilibrium. The decreased concentrations of Cl$^-$ during the event thus suggest the reaction of HNO$_3$ and subsequent displacement of aerosol Cl$^-$ with NO$_3^-$ as the air mass aged.

Observations of aerosol size distribution during the first event also suggest the role of mineral dust in aerosol NO$_3^-$ formation, as the high NO$_3^-$ events corresponded to a shift in particle size towards aerosols with larger diameters (Fig. 3a). Between 9 and 13 June, aerosols with diameters in the 1–2.5 µm range (PM$_{1}$–PM$_{2.5}$) were more prevalent than those with diameters less than 1 µm (PM$_{1}$) (Fig. 3a). The increase towards higher diameter particles correspond to a similar increase in the concentrations of mineral dust species, such as Na$^+$ and Ca$^{2+}$, and of NO$_3^-$, suggesting that aerosol NO$_3^-$ formation occurs as coarse mode NaNO$_3$ and Ca(NO$_3$)$_2$.

3.3 Mineral dust origin

The prominence of both Ca$^{2+}$ and Na$^+$ suggest that the mixture of both reacted mineral dust and sea spray is important for aerosol NO$_3^-$ formation, yet the two coarse particle events exhibited differences in their mineral composition. The first event appears to be more strongly influenced by sea spray transport, as Cl$^-$ existed in significantly higher concentrations during this event than during any other time during the campaign. The first coarse particle event exhibited a higher percentage of Na$^+$ (12.0 %) than occurred during the second event (7.5 %), and the second event had no accompanying Cl$^-$ as
indicated by Fig. 3. However, the low Mg$^{2+}$ to Na$^+$ molar ratio (0.08) during the first event relative to seawater (0.114) also suggests a non-sea-salt origin for at least some of the Na$^+$ observed at this time (Jordan et al., 2015). The second event had a higher percent composition of the crustal elements Ca$^{2+}$ (3.3 %) and Si (45.2 %) than was present during the first event (2.4 and 41.8 %, respectively) (Table 2), as well as a larger Ca$^{2+}$ to Na$^+$ ratio (0.302 for the first event and 0.509 for the second; for comparison, the Ca$^{2+}$/Na$^+$ of seawater is 0.022 Jordan et al., 2015). The lack of observed Cl$^-$ during the 23–28 June event may be due to a longer air mass transport that provided sufficient time for Cl$^-$ depletion to occur before the air mass reached the sampling site. However, the high relative concentrations of Ca$^{2+}$ and Si present during the second event could indicate that the differences in mineral composition are due to differences in the origin of the mineral dust or differing ratios of mineral dust and SSA between the two events, with a higher percentage of aerosol during the second event more likely originating from a continental rather than an ocean source.

Back trajectory analysis of the airmass origin during the two coarse particle events was conducted to elucidate the origin of the mineral species. The trajectories were computed using version 9.0 of the FLEXible PARticle dispersion model (FLEXPART, Stohl et al., 1998, available at http://flexpart.eu/), driven by analysis of the Global Forecasting System (GFS) of the National Centers for Environmental Protection (NCEP). The calculations were conducted by randomly releasing 10 000 inert air parcels within a 3 h period from the location of the Centreville, AL site, and followed for three days. This resulted in time-resolved 3-D information on the location of the airmass prior to arrival at Centreville, AL, including uncertainty due to stochastic processes like convection or turbulence acting on the airmass. From this information, deterministic trajectories were calculated to better guide the reader. Selected results of the back trajectory analysis are presented in Fig. 4.

The wind back trajectory analysis shows similar wind patterns occurring during the two coarse particle events. At the beginning of both events, winds originated from the Gulf of Mexico and traveled north to reach the measurement side. As the events con-
continued, wind patterns shifted and the air mass arrived from Texas traveling westwards along the continental United States until, near the end of each event, the air mass originated from a high elevation near the western coast of the United States. Although the overall pattern in wind trajectories is similar between the two coarse particle events, slight differences in the wind patterns at the beginning of each event may have contributed to the observed differences in composition of the aerosol. The air mass at the beginning of coarse particle event 1 travelled at low elevation (500–1000 m.a.s.l.) across the Gulf of Mexico and continued at this elevation until reaching the site, thus likely collecting and transporting sea spray aerosol to Centreville (Fig. 4a). In contrast, the air mass from event 2 originated from the northern shore of the Gulf and traveled at a lower elevation over land (less than 500 m.a.s.l.) and was over land for a greater period of time (Fig. 4c). Estimates of marine aerosol lifetimes suggest that the lifetime of these aerosol against deposition is on the order of 0.5 to 2 days (Jordan et al., 2015), indicating that any marine aerosol collected during the second event had likely undergone deposition from the air mass before reaching the SOAS site. These observations accord with the greater influence of marine aerosol on the first coarse particle event compared to the second (Fig. 3), and suggest a relatively local (within the United States) origin of the mineral dust aerosol.

3.4 Single-particle composition evidence for coarse-mode HNO$_3$ uptake

Individual particle analysis using CCSEM for the two coarse particle events was compared with the remainder of the campaign. Particle classes, determined from cluster analysis of EDX spectra, showed that the two coarse particle events contained a significantly higher percentage of mineral dust and sea spray aerosol, particularly in the supermicron size range, than was otherwise present during the course of the campaign (Fig. 5). During the two coarse particle events, between 15–20% of particles analyzed with diameters smaller than 1 µm and between 30–50% of particles with diameters larger than 1 µm consisted of mineral dust. By comparison, outside of these two events less than 5% of fine mode particles analyzed and between 10–25% of coarse mode
particles consisted of mineral dust. Averaged over all particle diameters, during the first coarse particle event (12 samples) 27 % of aerosols were mineral dust and 20 % were sea spray; while during the second coarse particle event (3 samples), 53 % of particles were mineral dust and 23 % were sea spray. These percentages are higher than those throughout the entire field study (5 June 2013 to 11 July 2013), in which 17 % of particles were mineral dust and 16 % were sea spray. As a result of the larger fraction of mineral dust and sea spray during these events, the relative fraction of secondary organic aerosol decreases from the majority (more than 50 %) of particles in the 1–2 µm range during non-coarse events to a significantly smaller fraction (approximately 25 %) of particles in the same diameter range during the coarse events.

SEM with EDX was also utilized to investigate the contribution of total nitrogen (including both inorganic and organic present, assuming minimal losses under the vacuum of the SEM) to particles collected during the campaign. The average weight percent of nitrogen per particle during the coarse particle events and non-coarse particle events varied as a function of particle diameter. Overall, a higher atomic weight percent of nitrogen was present in particles with diameters larger than 1 µm. In addition, the average number fraction of sea spray aerosol + mineral dust was similarly highest for coarse mode particles, increasing substantially for particles 1 µm or larger in diameter. The mixing of nitrate in sea spray aerosol will be described in detail in a forthcoming publication (Bondy et al., 2015). These data thus corroborate previous analysis on the impact of high acidity at the site by showing that very little nitrogen occurs in the fine mode in the aerosol and indicate the importance of mineral dust and sea spray aerosol in larger diameter particles.

3.5 Rate of nitrate production

In order to assess the contribution of mineral species to aerosol NO$_3^-$ formation, the rate of the heterogeneous uptake of HNO$_3$ onto aerosol to form NO$_3^-$ was determined using the Fuchs–Sutugin approach (Fuchs and Sutugin, 1971). This approach estimates the transition regime rate of uptake of HNO$_3$ onto measured aerosol surface area per unit
volume:

\[
\text{rate} = \sum \frac{S_a}{R_p} D_g \left(\frac{0.75\alpha(1 + Kn)}{Kn^2 + Kn + 0.283\alpha Kn + 0.75\alpha} \right) [\text{HNO}_3] \tag{2}
\]

where \(S_a\) is the surface area per volume of aerosol in each size bin between 0.7 and 2.5 \(\mu\text{m}\) in diameter, \(R_p\) is the aerosol particle radius of the size bin, \(D_g\) is the diffusivity of \(\text{HNO}_3\) in air (0.118 \(\text{cm}^2\text{s}^{-1}\), Durham and Stockburger, 1967), \(\alpha\) is the accommodation coefficient, assumed to be the same as the kinetic regime measured uptake coefficient \(\gamma\), 0.1 for \(\text{HNO}_3\), Usher et al., 2003), and \(Kn\) is the Knudsen number \(\left(Kn = \frac{3D_g}{c_{\text{HNO}_3}R_p}\right)\), \(c_{\text{HNO}_3} = 341 \text{ m s}^{-1}\) at 298 K). Aerosol size distribution data were available only for the first of the two coarse particle events.

The rate of \(\text{HNO}_3\) uptake necessitates the transition-regime approach because the aerosol size range assumed to be important for mineral dust or sea-salt uptake, 1–2.5 \(\mu\text{m}\) diameter, includes particles large enough to render the transition regime rate more appropriate than the commonly used kinetic uptake expression. A comparison of the rate predicted by Eq. (2) to the kinetic rate uptake expression (rate = \(\frac{1}{2}\gamma_{\text{HNO}_3} S_a c_{\text{HNO}_3} [\text{HNO}_3]\)) indicates that during peak coarse-mode loading on 13 June 2013, the transition-regime calculation is approximately 65% of the rate derived from the kinetic expression.

The calculated rate of \(\text{HNO}_3\) uptake onto aerosol surface area supports the conclusion that \(\text{NO}_3^-\) is produced primarily by this heterogeneous process. Figure 6 shows the calculated rate of production by heterogeneous uptake, along with factors that contribute to the rate of uptake such as \([\text{HNO}_3]\) and \(S_a\). The average predicted rate of uptake during the campaign was approximately 0.07 (\(\mu\text{g m}^{-3}\) h\(^{-1}\)), but increased to higher than 0.50 (\(\mu\text{g m}^{-3}\) h\(^{-1}\)) during the first coarse particle event. This increase in rate of production was accompanied by a similar increase in the aerosol surface area of aerosol between 1 and 2.5 \(\mu\text{m}\) in diameter (Fig. 6c). Higher rates of aerosol \(\text{NO}_3^-\) production track more closely with higher \(S_a\) than with other factors that contribute to \(\text{NO}_3^-\) production.
formation, such as increased concentrations of gas phase HNO$_3$ (Fig. 6b). As a consequence, using alternate collocated HNO$_3$ measurements (see Supplement) does not affect the predicted aerosol NO$_3^-$ production rates substantially. Thus, the limiting factor contributing to aerosol NO$_3^-$ formation is likely the mineral dust surface area.

3.6 Modeling and measurement comparison

The results of the ISORROPIA II and E-AIM models and comparisons with measured values are presented in Fig. 7. The ISORROPIA II model predicted average nitrate chemistry relatively well, as the comparison between NO$_3^-$ measured by MARGA and that predicted by ISORROPIA II shows a linear correlation (Fig. 7a), with a slope of 0.63 ± 0.06. However, ISORROPIA II both under- and over-predicted NO$_3^-$ with respect to concentrations measured by MARGA, and the correlation produced a low R^2 value of 0.11. The deviations between model and measurement show a strong relationship with diurnal profile, and ISORROPIA II consistently under-predicted particulate NO$_3^-$ concentrations during daylight hours but over-predicted them during the night, with the reverse for gas phase HNO$_3$ (Fig. 7b). The inflation of gas phase HNO$_3$ concentrations during the daytime shows a strong relationship with the diurnal profile of temperature, which similarly increases just after 6:00, peaks around 13:00–15:00, and gradually decreases to a low over the course of the night (Supplement). Predictions of NO$_3^-$ using models like ISORROPIA II are often very sensitive to inputs of temperature, RH, and available ammonia (Markovic et al., 2011), and in the case of the southeastern United States, ISORROPIA II may contain a bias towards higher dependence on temperature for the volatile HNO$_3$ gas than was observed at Centreville, causing a stronger partitioning from aerosol to gas during times of high temperatures. As discussed in the Supplement, this discrepancy may also be due to an under-measurement of HNO$_3$ daytime peaks.

The importance of explicitly including mineral species in thermodynamic modeling is highlighted by the results from E-AIM. The model was unable to accurately assess
aerosol NO$_3^-$ concentrations, consistently under-predicting concentrations of NO$_3^-$ relative to measurements, and instead partitioning almost all available nitrate into the gas phase as HNO$_3$ (Fig. 7c and d). Correlations of modeled and measured aerosol NO$_3^-$ produce an R^2 value of 2×10^{-4}. E-AIM, which includes only one mineral species (Na$^+$) in its thermodynamic calculations, manifests a strong dependence on RH, and does not predict any aerosol NO$_3^-$ at RH < 90 %. Only during the nighttime, when RH values were higher, does E-AIM partition nitrate into the aerosol phase. The high temperatures and RH, combined with the acidic atmosphere in the southeastern United States and high presence of mineral aerosol species mean significant discrepancies may exist between observations and simulations when these mineral species are not considered in thermodynamic models. These findings are consistent with Trebs et al. (2005) and Metzger et al. (2006), who performed modeling studies of the Amazon and the Mediterranean, respectively, and with Karydis et al. (1988), all of whom similarly found that mineral cations must be explicitly included in inorganic models in order to obtain valid information on gas/aerosol partitioning and ionic balance.

4 Historical trends

Mineral dust and aerosol acidity have been shown to be important factors to consider when seeking to understand the chemistry that occurs in the atmosphere above the southeastern United States. The site chosen for this campaign is part of the SEARCH network, which has been continuously monitoring aerosol and gas composition at Centreville for the past five years and thus gives a historical record for assessing the importance of coarse mode nitrate in this area. Measurements of PM$_{2.5}$ aerosol species, such as NH$_4^+$, SO$_4^{2-}$ and minerals, show that the site has a history of highly acidic aerosol and is often influenced by periodically high concentrations of sea spray and mineral dust aerosol. Annually averaged sulfate concentrations measured at the SEARCH site have exceeded ammonium concentrations by 8 to 20 % over the contin-
uous monitoring period 2008–2013 (see Fig. S2), showing that the high acidity measured during the SOAS campaign (Fig. 2) is typical of this site. Furthermore, the two coarse particle events appear to have frequent precedents. Over the five-year monitoring period, the site experienced 12–20 mineral dust events per year, and 20–42 sea spray events per year. Definitions of these events, annual totals, and full time series of mineral composition data averaged over three days are shown in the Supplement.

5 Conclusions

Gas and aerosol measurements of inorganic species in Centreville, AL indicate the importance of mineral dust and sea spray in the region. The southeastern United States is characterized by high emissions of \(\text{SO}_2 \), leading to high concentrations of aerosol \(\text{SO}_4^{2-} \), which available \(\text{NH}_4^+ \) is insufficient to balance. As a result, the aerosol in this region is acidic and formation of the fine mode \(\text{NH}_4\text{NO}_3 \) is thermodynamically unfavorable. Instead, nitrate in the southeastern United States likely exists in the form of coarse mode \(\text{NO}_3^- \) balanced by the presence of mineral cations arising from transport of mineral dust and sea spray aerosol. Studies of aerosol composition and heterogeneous uptake rates of \(\text{HNO}_3 \) onto particle surfaces during the campaign indicate that \(\text{NO}_3^- \) is formed predominately from this pathway, with aerosol \(\text{NO}_3^- \) formation likely limited by the availability of mineral dust surfaces. Analysis of historical aerosol composition data collected at this site also shows acidity and mineral dust levels similar to those found during the summer 2013 SOAS campaign, indicating the long-term importance of acidity and mineral dust and the need for consideration of this coarse particle mediated heterogeneous loss process for \(\text{NO}_x \) during assessments of the chemistry of the atmosphere, particularly in the southeastern United States.

The Supplement related to this article is available online at doi:10.5194/acpd-15-13827-2015-supplement.
Acknowledgements. The authors would like to thank Annmarie Carlton, Jose-Luis Jimenez, and everyone who helped organize the SOAS field campaign. We would also like to thank Metrohm Applikon for use of the MARGA instrument, and in particular J. T. Stanton for invaluable instrument troubleshooting advice. Chuck Brock, Greg Frost, and Stu McKeen provided a useful NEI emissions mapping tool that aided our analysis. Tran Nguyen, Alex Teng, John Crounse, Jason St. Clair, and Paul Wennberg provided very useful HNO$_3$ data from their CIMS instrument. We acknowledge support from EPA-STAR RD-8353901 and the Reed College Mellon Environmental Studies Summer Experience Fellowship. Funding for single particle analysis was provided by EPA (R835409). CCSEM was performed at the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility located at the Pacific Northwest National Laboratory (PNNL) and sponsored by the Office of Biological and Environmental Research of the U.S. Department of Energy (DOE). PNNL is operated for DOE by Battelle Memorial Institute under Contract No. DE-AC06-76RL01830. Travel funds to PNNL were provided by the University of Michigan Rackham Graduate School. Steve Bertman, Paul Shepson, Manelisi Nhliziyo, and Kerri Pratt assisted with funding, logistics, and sampling at SOAS for the single particle analysis.

References

Baker, K. and Scheff, P.: Photochemical model performance for PM2.5 sulfate, nitrate, ammonia, and precursor species SO\textsubscript{2}, HNO\textsubscript{3}, and NH\textsubscript{3} at background monitor locations in the central and eastern United States, Atmos. Environ., 41, 6185–6195, 2007. 13831

Evans, M. C., Campbell, S. W., Bhethanabotla, V., and Poor, N. D.: Effect of sea salt and calcium carbonate interactions with nitric acid on the direct dry deposition of nitrogen to Tampa Bay, Florida, Atmos. Environ., 38, 4847–4858, 2004. 13832, 13841

13851

Makkonen, U., Virkkula, A., Mäntykenttä, J., Hakola, H., Keronen, P., Vakkari, V., and Aalto, P. P.: Semi-continuous gas and inorganic aerosol measurements at a Finnish urban site: compar-
isons with filters, nitrogen in aerosol and gas phases, and aerosol acidity, Atmos. Chem. Phys., 12, 5617–5631, doi:10.5194/acp-12-5617-2012, 2012. 13833, 13857

13854

Stelson, A. W. and Seinfeld, J. H.: Thermodynamic prediction of the water activity, NH$_4$NO$_3$ dissociation constant, density and refractive index for the NH$_4$NO$_3$–(NH$_4$)$_2$SO$_4$–H$_2$O system at 25°C, Atmos. Environ., 16, 2507–2514, 1982. 13831

13855
Table 1. Statistical summary of major gas and particle phase species measured by the MARGA. Concentrations (μgm$^{-3}$) of each species were collected from 1 June to 13 July 2013 ($n = 949$) and were averaged over one hour of sample collection.

<table>
<thead>
<tr>
<th>Species</th>
<th>MDLa</th>
<th>Mean ($\pm 1\sigma$ SD)</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>HNO$_3$</td>
<td>0.05</td>
<td>0.34 ± 0.14</td>
<td>b</td>
<td>1.14</td>
</tr>
<tr>
<td>NH$_3$</td>
<td>0.05</td>
<td>0.51 ± 0.24</td>
<td>0.15</td>
<td>2.09</td>
</tr>
<tr>
<td>SO$_2$</td>
<td>0.04</td>
<td>0.68 ± 1.47</td>
<td>b</td>
<td>16.4</td>
</tr>
<tr>
<td>Cl$^-$</td>
<td>0.02</td>
<td>0.02 ± 0.05</td>
<td>b</td>
<td>0.42</td>
</tr>
<tr>
<td>NO$_3^-$</td>
<td>0.04</td>
<td>0.37 ± 0.20</td>
<td>b</td>
<td>1.07</td>
</tr>
<tr>
<td>SO$_4^{2-}$</td>
<td>0.03</td>
<td>2.20 ± 1.19</td>
<td>0.50</td>
<td>8.87</td>
</tr>
<tr>
<td>NH$_4^+$</td>
<td>0.03</td>
<td>0.67 ± 0.38</td>
<td>0.11</td>
<td>2.21</td>
</tr>
<tr>
<td>Na$^+$</td>
<td>0.02</td>
<td>0.08 ± 0.09</td>
<td>b</td>
<td>0.50</td>
</tr>
<tr>
<td>K$^+$</td>
<td>0.01</td>
<td>0.05 ± 0.06</td>
<td>b</td>
<td>0.31</td>
</tr>
<tr>
<td>Mg$^{2+}$</td>
<td>0.01</td>
<td>0.01 ± 0.02</td>
<td>b</td>
<td>0.09</td>
</tr>
<tr>
<td>Ca$^{2+}$</td>
<td>0.01</td>
<td>0.05 ± 0.06</td>
<td>b</td>
<td>0.31</td>
</tr>
</tbody>
</table>

a Minimum Detection Limit (MDL) as reported by Makkonen et al. (2012)
b Below Minimum Detection Limit (MDL)
Table 2. Percent composition and element:Si ratios of the two different coarse particle events observed during the summer 2013 SOAS field campaign.

<table>
<thead>
<tr>
<th>Element</th>
<th>Coarse Particle Event 1 Composition (%)</th>
<th>Coarse Particle Event 2 Composition (%)</th>
<th>Si Ratio</th>
<th>Si Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al</td>
<td>26.8 %</td>
<td>26.2 %</td>
<td>0.64</td>
<td>0.59</td>
</tr>
<tr>
<td>Si</td>
<td>41.8 %</td>
<td>45.2 %</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>K</td>
<td>5.1 %</td>
<td>5.5 %</td>
<td>0.12</td>
<td>0.11</td>
</tr>
<tr>
<td>Ca</td>
<td>2.4 %</td>
<td>3.3 %</td>
<td>0.06</td>
<td>0.07</td>
</tr>
<tr>
<td>Ti</td>
<td>1.1 %</td>
<td>1.1 %</td>
<td>0.03</td>
<td>0.02</td>
</tr>
<tr>
<td>Mn</td>
<td>0.2 %</td>
<td>< 0.01</td>
<td>< 0.01</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Fe</td>
<td>9.3 %</td>
<td>9.4 %</td>
<td>0.22</td>
<td>0.21</td>
</tr>
<tr>
<td>Na</td>
<td>12.0 %</td>
<td>7.5 %</td>
<td>0.31</td>
<td>0.18</td>
</tr>
<tr>
<td>Mg</td>
<td>1.4 %</td>
<td>1.8 %</td>
<td>0.02</td>
<td>0.04</td>
</tr>
</tbody>
</table>

Al, Si, K, Ca, Ti, Mn, and Fe data from ARA XRF measurements; Na and Mg from data MARGA measurements; all have 2.5 µm size cut.
Figure 1. Time series of hourly averaged HNO$_3$ and NO$_3^-$ concentrations measured by MARGA during the summer SOAS campaign, including the (a) full time series and two subsets, with shading indicating nighttime, that encompass the periods of elevated NO$_3^-$ during (b) 9 to 15 June and (c) 23 to 30 June 2013.

Figure 1. Time series of hourly averaged HNO$_3$ and NO$_3^-$ concentrations measured by MARGA during the summer SOAS campaign, including the (a) full time series and two subsets, with shading indicating nighttime, that encompass the periods of elevated NO$_3^-$ during (b) 9 to 15 June and (c) 23 to 30 June 2013.

Figure 2. Correlation of SO$_2^-$ and NH$_4^+$ concentrations measured by MARGA during the 2013 SOAS campaign (1 June to 13 July). The higher concentrations of SO$_2^-$ relative to NH$_4^+$ show an acidic environment at the SOAS site, with insufficient moles of NH$_4^+$ present to fully neutralize existing SO$_2^-$ as (NH$_4^+$)$_2$SO$_4$.

22
Figure 1. Time series of hourly averaged HNO$_3$ and NO$^-$$_3$ concentrations measured by MARGA during the summer SOAS campaign, including the (a) full time series and two subsets, with shading indicating nighttime, that encompass the periods of elevated NO$^-$$_3$ during (b) 9 June to 15 June and (c) 23 June to 30 June 2013.

Figure 2. Correlation of SO$_2$$_4$$^-$ and NH$_4$$^+$ concentrations measured by MARGA during the 2013 SOAS campaign (1 June to 13 July). The higher concentrations of SO$_2$$_4$$^-$ relative to NH$_4$$^+$ show an acidic environment at the SOAS site, with insufficient moles of NH$_4$$^+$ present to fully neutralize existing SO$_2$$_4$$^-$ as (NH$_4$)$_2$SO$_4$.
Figure 3. Periods of high aerosol NO$_3^-$ during the SOAS campaign were correlated with (a) high PM$_1$–PM$_{2.5}$ aerosol mass fraction, (b) high Na$^+$ and Cl$^-$ concentrations, indicating the presence of sea spray, and (c, stacked) high concentrations of minerals, with molar concentrations sufficient to neutralize measured NO$_3^-$ during coarse mode periods. Na$^+$ residual indicates aerosol Na$^+$ not associated with Cl$^-$, calculated by subtracting an equivalent of Cl$^-$ from Na$^+$. The dates indicated by vertical lines in (c) were chosen for wind pattern analysis (Sect. 3.3).
Figure 4. Three-day back trajectories at the Centreville site (circled), showing horizontally integrated (top) and vertically integrated (bottom) trajectories with mass-weighted and cluster centroid trajectories as defined by (Stohl et al., 2002), for (a) event 1 on 9 June, (b) event 1 on 12 June, (c) event 2 on 24 June, and (d) event 2 on 28 June. Times shown correlate with peaks indicated by horizontal bars in Fig. 3c.
Figure 5. Compositional analysis using SEM with EDX of particles collected during the SOAS campaign as a function of particle diameter during (a) the two coarse particle events and (b) throughout the remainder of the field campaign. SSA indicates sea spray aerosol and SOA indicates secondary organic aerosol.
Figure 6. (a) Hourly averaged NO$_3^-$ aerosol concentrations during the 2013 SOAS campaign, compared with factors that contribute to NO$_3^-$ formation such as (b) HNO$_3$ concentrations and (c) estimated aerosol surface area of particles with 0.7–2.5 µm diameters. (d) The rate of HNO$_3$ uptake on mineral dust is predominantly driven by PM$_{2.5}$ surface area.
Figure 7. Results of inorganic modeling compared with hourly measurements made by MARGA during the 2013 SOAS campaign. (a) Correlation of aerosol \(\text{NO}_3^- \) between ISORROPIA II and MARGA; (b) diurnal pattern of gaseous HNO\(_3\) and aerosol \(\text{NO}_3^- \) for ISORROPIA II and MARGA; (c) correlation of aerosol \(\text{NO}_3^- \) between E-AIM and MARGA; and (d) diurnal pattern of gaseous HNO\(_3\) and aerosol \(\text{NO}_3^- \) for E-AIM and MARGA.