Atmos. Chem. Phys. Discuss., 13, 9567-9613, 2013
www.atmos-chem-phys-discuss.net/13/9567/2013/
doi:10.5194/acpd-13-9567-2013
© Author(s) 2013. This work is distributed
under the Creative Commons Attribution 3.0 License.
Review Status
This discussion paper has been under review for the journal Atmospheric Chemistry and Physics (ACP). Please refer to the corresponding final paper in ACP.
Why models struggle to capture Arctic Haze: the underestimated role of gas flaring and domestic combustion emissions
A. Stohl1, Z. Klimont2, S. Eckhardt1, and K. Kupiainen2,3
1NILU – Norwegian Institute for Air Research, Kjeller, Norway
2International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria
3Finnish Environment Institute (SYKE), Helsinki, Finland

Abstract. Arctic Haze is a seasonal phenomenon with high concentrations of accumulation-mode aerosols occurring in the Arctic in winter and early spring. Chemistry transport models and climate chemistry models struggle to reproduce this phenomenon, and this has recently prompted changes in aerosol removal schemes to remedy the modeling problems. In this paper, we show that shortcomings in current emission data sets are at least as important. We perform a 3 yr model simulation of black carbon (BC) with the Lagrangian particle dispersion model FLEXPART. The model is driven with a new emission data set which includes emissions from gas flaring. While gas flaring is estimated to contribute less than 3% of global BC emissions in this data set, flaring dominates the estimated BC emissions in the Arctic (north of 66° N). Putting these emissions into our model, we find that flaring contributes 42% to the annual mean BC surface concentrations in the Arctic. In March, flaring even accounts for 52% of all Arctic BC near the surface. Most of the flaring BC remains close to the surface in the Arctic, so that the flaring contribution to BC in the middle and upper troposphere is small. Another important factor determining simulated BC concentrations is the seasonal variation of BC emissions from domestic combustion. We have calculated daily domestic combustion emissions using the heating degree day (HDD) concept based on ambient air temperature and compare results from model simulations using emissions with daily, monthly and annual time resolution. In January, the Arctic-mean surface concentrations of BC due to domestic combustion emissions are 150% higher when using daily emissions than when using annually constant emissions. While there are concentration reductions in summer, they are smaller than the winter increases, leading to a systematic increase of annual mean Arctic BC surface concentrations due to domestic combustion by 68% when using daily emissions. A large part (93%) of this systematic increase can be captured also when using monthly emissions; the increase is compensated by a decreased BC burden at lower latitudes. In a comparison with BC measurements at six Arctic stations, we find that using daily-varying domestic combustion emissions and introducing gas flaring emissions leads to large improvements of the simulated Arctic BC, both in terms of mean concentration levels and simulated seasonality. Case studies based on BC and carbon monoxide (CO) measurements from the Zeppelin observatory appear to confirm flaring as an important BC source that can produce pollution plumes in the Arctic with a high BC/CO enhancement ratio, as expected for this source type. Our results suggest that it may not be "vertical transport that is too strong or scavenging rates that are too low" and "opposite biases in these processes" in the Arctic and elsewhere in current aerosol models, as suggested in a recent review article (Bond et al., 2013), but missing emission sources and lacking time resolution of the emission data that are causing opposite model biases in simulated BC concentrations in the Arctic and in the mid-latitudes.

Citation: Stohl, A., Klimont, Z., Eckhardt, S., and Kupiainen, K.: Why models struggle to capture Arctic Haze: the underestimated role of gas flaring and domestic combustion emissions, Atmos. Chem. Phys. Discuss., 13, 9567-9613, doi:10.5194/acpd-13-9567-2013, 2013.
 
Search ACPD
Discussion Paper
    XML
    Citation
    Final Revised Paper
    Share