Atmos. Chem. Phys. Discuss., 13, 9267-9317, 2013
© Author(s) 2013. This work is distributed
under the Creative Commons Attribution 3.0 License.
Review Status
This discussion paper has been under review for the journal Atmospheric Chemistry and Physics (ACP). Please refer to the corresponding final paper in ACP.
Absorption properties of Mediterranean aerosols obtained from multi-year ground-based and satellite remote sensing observations
M. Mallet1,2, O. Dubovik3, P. Nabat4, F. Dulac5, R. Kahn6, J. Sciare5, D. Paronis7, and J. F. Léon1,2
1Université de Toulouse, UPS, LA (Laboratoire d'Aérologie), 14 avenue Edouard Belin, 31400 Toulouse, France
2CNRS, LA (Laboratoire d'Aérologie), UMR5560, 31400 Toulouse, France
3Laboratoire d'Optique Atmosphérique, Lille, France
4CNRM-GAME, Météo-France, Toulouse, France
5Laboratoire des Sciences du Climat et de l'Environnement (IPSL/LSCE), CEA-CNRS-USVQ, Gif-sur-Yvette, France
6NASA Goddard Space Flight Center, Maryland, USA
7National Observatory of Athens, Institute for Astronomy, Astrophysics, Space Applications and Remote Sensing, Athens, Greece

Abstract. Aerosol absorption properties are of high importance to assess aerosol impact on regional climate. This study presents an analysis of aerosol absorption products obtained over the Mediterranean Basin or land stations in the region from multi-year ground-based AERONET and satellite observations with a focus on the Absorbing Aerosol Optical Depth (AAOD), Single Scattering Albedo (SSA) and their spectral dependence. The AAOD and Absorption Angström Exponent (AAE) data set is composed of daily averaged AERONET level 2 data from a~total of 22 Mediterranean stations having long time series, mainly under the influence of urban-industrial aerosols and/or soil dust. This data set covers the 17 yr period 1996–2012 with most data being from 2003–2011 (~89% of level-2 AAOD data). Since AERONET level-2 absorption products require a high aerosol load (AOD at 440 nm > 0.4), which is most often related to the presence of desert dust, we also consider level-1.5 SSA data, despite their higher uncertainty, and filter out data with an Angström exponent <1.0 in order to study absorption by carbonaceous aerosols. The SSA data set includes both AERONET level-2 and satellite level-3 products. Satellite-derived SSA data considered are monthly level 3 products mapped at the regional scale for the spring and summer seasons that exhibit the largest aerosol loads. The satellite SSA dataset includes the following products: (i) Multi-angle Imaging SpectroRadiometer (MISR) over 2000–2011, (ii) Ozone Monitoring Instrument (OMI) near-UV algorithm over 2004–2010, and (iii) MODerate resolution Imaging Spectroradiometer (MODIS) Deep-Blue algorithm over 2005–2011, derived only over land in dusty conditions. Sun-photometer observations show that values of AAOD at 440 nm vary between 0.024 ± 0.01 (resp. 0.040 ± 0.01) and 0.050 ± 0.01 (0.055 ± 0.01) for urban (dusty) sites. Analysis shows that the Mediterranean urban-industrial aerosols appear "moderately" absorbing with values of SSA close to ~0.94–0.95 ± 0.04 (at 440 nm) in most cases except over the large cities of Rome and Athens, where aerosol appears more absorbing (SSA ~0.89–0.90 ± 0.04). The aerosol Absorption Angström Exponent (AAE, estimated using 440 and 870 nm) is found to be larger than 1 for most sites over the Mediterranean, a manifestation of mineral dust (iron) and/or brown carbon producing the observed absorption. AERONET level-2 sun-photometer data indicate the existence of a moderate East–West gradient, with higher values over the eastern basin (AAEEast. = 1.39/AAEWest. = 1.33) due to the influence of desert dust. The North–South AAE gradient is more pronounced, especially over the western basin. Our additional analysis of AERONET level-1.5 data also shows that organic absorbing aerosols significantly affect some Mediterranean sites. These results indicate that current climate models treating organics as nonabsorbing over the Mediterranean certainly underestimate the warming effect due to carbonaceous aerosols. A~comparative analysis of the regional SSA variability has been attempted using satellite data. OMI and MODIS data show an absorbing zone (SSA ~0.90 at 470–500 nm) over Northeastern Africa that does not appear in the MISR retrievals. In contrast, MISR seems able to observe the East–West SSA gradient during summer, as also detected by AERONET. Also, the analysis of SSA provided by satellites indicates that the aerosol over the Mediterranean Sea appears less absorbing during spring (MAM) than summer (JJA).

Citation: Mallet, M., Dubovik, O., Nabat, P., Dulac, F., Kahn, R., Sciare, J., Paronis, D., and Léon, J. F.: Absorption properties of Mediterranean aerosols obtained from multi-year ground-based and satellite remote sensing observations, Atmos. Chem. Phys. Discuss., 13, 9267-9317, doi:10.5194/acpd-13-9267-2013, 2013.
Search ACPD
Discussion Paper
    Final Revised Paper