Atmos. Chem. Phys. Discuss., 13, 7081-7112, 2013
www.atmos-chem-phys-discuss.net/13/7081/2013/
doi:10.5194/acpd-13-7081-2013
© Author(s) 2013. This work is distributed
under the Creative Commons Attribution 3.0 License.
Review Status
This discussion paper has been under review for the journal Atmospheric Chemistry and Physics (ACP). Please refer to the corresponding final paper in ACP.
Ozone trends derived from the total column and vertical profiles at a northern mid-latitude station
P. J. Nair1, S. Godin-Beekmann1, J. Kuttippurath1, G. Ancellet1, F. Goutail1, A. Pazmiño1, L. Froidevaux2, J. M. Zawodny3, R. D. Evans4, and M. Pastel1
1UPMC Université Paris 06, Université Versailles-Saint-Quentin, UMR8190, LATMOS-IPSL, CNRS/INSU, Paris, France
2Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
3Chemistry and Dynamics Branch, NASA Langley Research Center, Hampton, VA, USA
4NOAA, Earth System Research Laboratory, Global Monitoring Division, Boulder, Colorado, USA

Abstract. The trends and variability of ozone are assessed over a northern mid-latitude station, Haute-Provence Observatory (OHP – 43.93° N, 5.71° E), using total column ozone observations from the Dobson and Système d'Analyse par Observation Zénithale spectrometers, and stratospheric ozone profile measurements from Light detection and ranging, ozonesondes, Stratospheric Aerosol and Gas Experiment II, Halogen Occultation Experiment and Aura Microwave Limb Sounder. A multi-variate regression model with quasi biennial oscillation (QBO), solar flux, aerosol optical thickness, heat flux, North Atlantic oscillation (NAO) and piecewise linear trend (PWLT) or Equivalent Effective Stratospheric Chlorine (EESC) functions is applied to the ozone anomalies. The maximum variability of ozone in winter/spring is explained by QBO and heat flux in 15–45 km and in 15–24 km, respectively. The NAO shows maximum influence in the lower stratosphere during winter while the solar flux influence is largest in the lower and middle stratosphere in summer. The total column ozone trends estimated from the PWLT and EESC functions are of −1.39±0.26 and −1.40±0.25 DU yr−1, respectively over 1984–1996 and about 0.65±0.32 and 0.42±0.08 DU yr−1, respectively over 1997–2010. The ozone profiles yield similar and significant EESC-based and PWLT trends in 1984–1996 and are about −0.5 and −0.8 % yr−1 in the lower and upper stratosphere, respectively. In 1997–2010, the EESC-based and PWLT trends are significant and of order 0.3 and 0.1 % yr−1, respectively in the 18–28 km range, and at 40–45 km, EESC provides significant ozone trends larger than the insignificant PWLT results. Therefore, this analysis unveils ozone recovery signals from total column ozone and profile measurements at OHP, and hence in the mid-latitudes.

Citation: Nair, P. J., Godin-Beekmann, S., Kuttippurath, J., Ancellet, G., Goutail, F., Pazmiño, A., Froidevaux, L., Zawodny, J. M., Evans, R. D., and Pastel, M.: Ozone trends derived from the total column and vertical profiles at a northern mid-latitude station, Atmos. Chem. Phys. Discuss., 13, 7081-7112, doi:10.5194/acpd-13-7081-2013, 2013.
 
Search ACPD
Discussion Paper
    XML
    Citation
    Final Revised Paper
    Share