Atmos. Chem. Phys. Discuss., 13, 5649-5685, 2013
www.atmos-chem-phys-discuss.net/13/5649/2013/
doi:10.5194/acpd-13-5649-2013
© Author(s) 2013. This work is distributed
under the Creative Commons Attribution 3.0 License.
Review Status
This discussion paper has been under review for the journal Atmospheric Chemistry and Physics (ACP). Please refer to the corresponding final paper in ACP.
Airborne hydrogen cyanide measurements using a chemical ionisation mass spectrometer for the plume identification of biomass burning forest fires
M. Le Breton1, A. Bacak1, J. B. A. Muller1, S. J. O'Shea1, P. Xiao2, M. N. R. Ashfold2, M. C. Cooke2, R. Batt2, D. E. Shallcross2, D. E. Oram3, G. Forster4, S. J.-B. Bauguitte5, and C. J. Percival1
1The Centre for Atmospheric Science, The School of Earth, Atmospheric and Environmental Sciences, The University of Manchester, Simon Building, Brunswick Street, Manchester, M13 9PL, UK
2School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
3National Centre for Atmospheric Science, School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
4School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
5Facility for Airborne Atmospheric Measurements (FAAM), Building 125, Cranfield University, Cranfield, Bedford, MK43 0AL, UK

Abstract. A Chemical Ionisation Mass Spectrometer (CIMS) was developed for measuring hydrogen cyanide (HCN) from biomass burning events in Canada using I reagent ions on board the FAAM BAe-146 research aircraft during the BORTAS campaign in 2011. The ionisation scheme enabled highly sensitive measurements at 1 Hz frequency through biomass burning plumes in the troposphere.

A strong correlation between the HCN, carbon monoxide (CO) and acetonitrile (CH3CN) was observed, indicating the potential of HCN as a biomass burning (BB) marker. A plume was defined as being 6 standard deviations above background for the flights. This method was compared with a number of alternative plume defining techniques employing CO and CH3CN measurements. The 6 sigma technique produced the highest R2 values for correlations with CO. A Normalised Excess Mixing Ratio (NEMR) of 3.76 ± 0.022 pptv ppbv−1 was calculated which is within the range quoted in previous research (Hornbrook et al., 2011). The global tropospheric model STOCHEM-CRI incorporated both the observed ratio and extreme ratios derived from other studies to generate global emission totals of HCN via biomass burning. Using the ratio derived from this work the emission total for HCN from BB was 0.92 Tg (N) yr−1.


Citation: Le Breton, M., Bacak, A., Muller, J. B. A., O'Shea, S. J., Xiao, P., Ashfold, M. N. R., Cooke, M. C., Batt, R., Shallcross, D. E., Oram, D. E., Forster, G., Bauguitte, S. J.-B., and Percival, C. J.: Airborne hydrogen cyanide measurements using a chemical ionisation mass spectrometer for the plume identification of biomass burning forest fires, Atmos. Chem. Phys. Discuss., 13, 5649-5685, doi:10.5194/acpd-13-5649-2013, 2013.
 
Search ACPD
Discussion Paper
    XML
    Citation
    Final Revised Paper
    Share