Atmos. Chem. Phys. Discuss., 13, 28395-28451, 2013
www.atmos-chem-phys-discuss.net/13/28395/2013/
doi:10.5194/acpd-13-28395-2013
© Author(s) 2013. This work is distributed
under the Creative Commons Attribution 3.0 License.
Review Status
This discussion paper has been under review for the journal Atmospheric Chemistry and Physics (ACP). Please refer to the corresponding final paper in ACP.
The 2013 severe haze over the southern Hebei, China: model evaluation, source apportionment, and policy implications
L. T. Wang1,2,3, Z. Wei1,2, J. Yang1,2, Y. Zhang3, F. F. Zhang1,2, J. Su1,2, C. C. Meng1,2, and Q. Zhang4
1Department of Environmental Engineering, Hebei University of Engineering, Handan, Hebei 056038, China
2State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China
3Department of Marine, Earth and Atmospheric Science, North Carolina State University, Raleigh, NC 27695, USA
4Center for Earth System Science, Tsinghua University, Beijing 100084, China

Abstract. Extremely severe and persistent haze occurred in January 2013 over the eastern and northern China. The record-breaking high concentrations of fine particulate matter (PM2.5) of more than 700 μg m−3 on hourly average and the persistence of the episodes have raised widespread, considerable public concerns. During that period, seven of the top ten polluted cities in China were within Hebei Province. The three cities in southern Hebei, Shijiazhuang, Xingtai, and Handan, have been listed as the top three polluted cities according to the statistics for the first half year of 2013. In this study, the Mesoscale Modeling System Generation 5 (MM5) and the Models-3/Community Multiscale Air Quality (CMAQ) modeling system are applied to simulate the 2013 severe winter regional hazes in East Asia and the northern China at horizontal grid resolutions of 36 and 12 km, respectively, using the Multi-resolution Emission Inventory of China (MEIC). The source contributions of major source regions and sectors to PM2.5 concentrations in the three most-polluted cities in southern Hebei are quantified aiming at the understanding of the sources of the severe haze pollution in this region, and the results are compared with December 2007, the haziest month in 2001–2010. Model evaluation against meteorological and air quality observations indicates an overall acceptable performance and the model tends to underpredict PM2.5 and coarse particulate matter (PM10) concentrations during the extremely severe polluted episodes. The MEIC inventory is proved to be a good estimation in terms of total emissions of cities but uncertainties exist in the spatial allocations of emissions into fine grid resolutions within cities. The source apportionment shows that emissions from the northern Hebei and the Beijing–Tianjin city cluster are two major regional contributors to the pollution in January 2013 in Shijiazhuang, comparing with those from Shanxi and the northern Hebei for December 2007. For Xingtai and Handan, the emissions from the northern Hebei and Henan are important. The industrial and domestic sources are the most significant local contributors, and the domestic and agricultural emissions from Shandong and Henan are unnegligible regional sources, especially for Xingtai and Handan. Even in the top two haziest months (i.e., January 2013 and December 2007), a large fraction of PM2.5 in the three cities may originate from quite different regional sources. These results indicate the importance of establishing a regional joint framework of policymaking and action system to effectively mitigate air pollution in this area, not only over Beijing–Tianjin–Hebei area, but also surrounding provinces such as Henan, Shandong, and Shanxi.

Citation: Wang, L. T., Wei, Z., Yang, J., Zhang, Y., Zhang, F. F., Su, J., Meng, C. C., and Zhang, Q.: The 2013 severe haze over the southern Hebei, China: model evaluation, source apportionment, and policy implications, Atmos. Chem. Phys. Discuss., 13, 28395-28451, doi:10.5194/acpd-13-28395-2013, 2013.
 
Search ACPD
Discussion Paper
    XML
    Citation
    Final Revised Paper
    Share