Atmos. Chem. Phys. Discuss., 13, 26175-26215, 2013
© Author(s) 2013. This work is distributed
under the Creative Commons Attribution 3.0 License.
Review Status
This discussion paper has been under review for the journal Atmospheric Chemistry and Physics (ACP). Please refer to the corresponding final paper in ACP.
Numerical simulation of "An American Haboob"
A. Vukovic1,2, M. Vujadinovic1,2, G. Pejanovic2, J. Andric3, M. R. Kumjian4, V. Djurdjevic2,5, M. Dacic2, A. K. Prasad6, H. M. El-Askary6,7, B. C. Paris8, S. Petkovic2, S. Nickovic9,10, and W. A. Sprigg11,12
1Faculty of Agriculture, University of Belgrade, Serbia
2South East European Virtual Climate Change Center, RHMSS, Belgrade, Serbia
3Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, USA
4National Center for Atmospheric Research, Boulder, CO, USA
5Institute of Meteorology, Faculty of Physics, University of Belgrade, Serbia
6School of Earth and Environmental Sciences, Chapman University, Orange, CA, USA
7Department of Environmental Sciences, Alexandria University, Moharem Bek, Alexandria, Egypt
8Arizona Department of Environmental Quality, Phoenix, AZ, USA
9World Meteorological Organization, Geneva, Switzerland
10Institute of Physics, Belgrade, Serbia
11Institute for Atmospheric Physics, The University of Arizona, Tucson, AZ, USA
12WMO Pan-American Center for SDS-WAS, Chapman University, Orange, CA, USA

Abstract. A dust storm of fearful proportions hit Phoenix in the early evening hours of 5 July 2011. This storm, an American haboob, was predicted hours in advance because numerical, land-atmosphere modeling, computing power and remote sensing of dust events have improved greatly over the past decade. High resolution numerical models are required for accurate simulation of the small-scales of the haboob process, with high velocity surface winds produced by strong convection and severe downbursts. Dust productive areas in this region consist mainly of agricultural fields, with soil surfaces disturbed by plowing and tracks of land in the high Sonoran desert laid barren by ongoing draught.

Model simulation of the 5 July 2011 dust storm uses the coupled atmospheric-dust model NMME-DREAM with 3.5 km horizontal resolution. A mask of the potentially dust productive regions is obtained from the land cover and the Normalized Difference Vegetation Index (NDVI) data from the Moderate Resolution Imaging Spectroradiometer (MODIS). Model results are compared with radar and other satellite-based images and surface meteorological and PM10 observations. The atmospheric model successfully hindcasted the position of the front in space and time, with about 1 h late arrival in Phoenix. The dust model predicted the rapid uptake of dust and high values of dust concentration in the ensuing storm. South of Phoenix, over the closest source regions (~ 25 km), the model PM10 surface dust concentration reached ~ 2500 μg m−3, but underestimated the values measured by the PM10stations within the city. Model results are also validated by the MODIS aerosol optical depth (AOD), employing deep blue (DB) algorithms for aerosol loadings. Model validation included Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO), equipped with the lidar instrument, to disclose the vertical structure of dust aerosols as well as aerosol subtypes. Promising results encourage further research and application of high-resolution modeling and satellite-based remote sensing to warn of approaching severe dust events and reduce risks for safety and health.

Citation: Vukovic, A., Vujadinovic, M., Pejanovic, G., Andric, J., Kumjian, M. R., Djurdjevic, V., Dacic, M., Prasad, A. K., El-Askary, H. M., Paris, B. C., Petkovic, S., Nickovic, S., and Sprigg, W. A.: Numerical simulation of "An American Haboob", Atmos. Chem. Phys. Discuss., 13, 26175-26215, doi:10.5194/acpd-13-26175-2013, 2013.
Search ACPD
Discussion Paper
    Final Revised Paper