Atmos. Chem. Phys. Discuss., 13, 18113-18141, 2013
www.atmos-chem-phys-discuss.net/13/18113/2013/
doi:10.5194/acpd-13-18113-2013
© Author(s) 2013. This work is distributed
under the Creative Commons Attribution 3.0 License.
Review Status
This discussion paper has been under review for the journal Atmospheric Chemistry and Physics (ACP). Please refer to the corresponding final paper in ACP.
Linking biogenic hydrocarbons to biogenic aerosol in the Borneo rainforest
J. F. Hamilton1, M. R. Alfarra2,3, N. Robinson3, M. W. Ward1, A. C. Lewis1,4, G. B. McFiggans3, H. Coe3, and J. D. Allan2,3
1Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
2National Centre for Atmospheric Science (NCAS), School of Earth, Atmospheric and Environmental Sciences, University of Manchester, Manchester, M13 9PL, UK
3Centre for Atmospheric Science, School of Earth, Atmospheric and Environmental Sciences, University of Manchester, Manchester, M13 9PL, UK
4National Centre for Atmospheric Science, University of York, Heslington, York, YO10 5DD, UK

Abstract. Emissions of biogenic volatile organic compounds are though to contribute significantly to secondary organic aerosol formation in the tropics, but understanding the process of these transformations has proved difficult, due to the complexity of the chemistry involved and very low concentrations. Aerosols from above a South East Asian tropical rainforest in Borneo were characterised using liquid chromatography-ion trap mass spectrometry, high resolution aerosol mass spectrometry and fourier transform ion cyclotron resonance mass spectrometry (FTICRMS) techniques. Oxygenated compounds were identified in ambient organic aerosol that could be directly traced back to isoprene, monoterpenes and sesquiterpene emissions, by combining field data on chemical structures with mass spectral data generated from synthetically produced products created in a simulation chamber. Eighteen oxygenated species of biogenic origin were identified in the rainforest aerosol from the precursors isoprene, α-pinene, limonene, α-terpinene and β-caryophyllene. The observations provide the unambiguous field detection of monoterpene and sesquiterpene oxidation products in SOA above a pristine tropical rainforest. The presence of 2-methyltetrol organosulfates and an associated sulfated dimer provides direct evidence that isoprene in the presence of sulfate aerosol can make a contribution to biogenic organic aerosol above tropical forests. High-resolution mass spectrometry indicates that sulfur can also be incorporated into oxidation products arising from monoterpene precursors in tropical aerosol.

Citation: Hamilton, J. F., Alfarra, M. R., Robinson, N., Ward, M. W., Lewis, A. C., McFiggans, G. B., Coe, H., and Allan, J. D.: Linking biogenic hydrocarbons to biogenic aerosol in the Borneo rainforest, Atmos. Chem. Phys. Discuss., 13, 18113-18141, doi:10.5194/acpd-13-18113-2013, 2013.
 
Search ACPD
Discussion Paper
XML
Citation
Final Revised Paper
Share