Atmos. Chem. Phys. Discuss., 13, 16301-16335, 2013
© Author(s) 2013. This work is distributed
under the Creative Commons Attribution 3.0 License.
Review Status
This discussion paper has been under review for the journal Atmospheric Chemistry and Physics (ACP). Please refer to the corresponding final paper in ACP.
Enhancement of atmospheric H2SO4/H2O nucleation: organic oxidation products versus amines
T. Berndt1, M. Sipilä1,2,3, F. Stratmann1, T. Petäjä2, J. Vanhanen5, J. Mikkilä5, J. Patokoski2, R. Taipale2, R. Lee Mauldin III2,4, and M. Kulmala2
1Leibniz-Institut für Troposphärenforschung e.V., Permoserstr. 15, 04318 Leipzig, Germany
2Department of Physics, University of Helsinki, P.O. Box 64, 00014, Finland
3Helsinki Institute of Physics, University of Helsinki, P.O. Box 64, 00014, Finland
4Department of Atmospheric and Oceanic Sciences, University of Colorado at Boulder, Boulder, Colorado 80309, USA
5AIRMODUS, Gustaf Hällströmin katu 2 a, 00560 Helsinki, Finland

Abstract. Atmospheric H2SO4/H2O nucleation influencing effects have been studied in the flow tube IfT-LFT (Institute for Tropospheric Research – Laminar Flow Tube) at 293 ± 0.5 K and a pressure of 1 bar using synthetic air as the carrier gas. The presence of a possible background amine concentration in the order of 107–108 molecule cm−3 throughout the experiments has to be taken into account. In a first set of investigations, ozonolysis of olefins (tetramethylethylene, 1-methyl-cyclohexene, α-pinene and limonene) for close to atmospheric concentrations, served as the source of OH radicals and possibly other oxidants initiating H2SO4 formation starting from SO2. The oxidant generation is inevitably associated with the formation of a series of organic oxidation products arising from the parent olefins. These products (first generation mainly) showed no clear effect on the number of nucleated particles within a wide range of experimental conditions for H2SO4 concentrations higher than ~107 molecule cm−3. A comparison of the results of two different particle counters (50% cut-off size: about 1.5 nm or 2.5–3 nm) suggested that the early growth process of the nucleated particles was not significantly influenced by the organic oxidation products. An additional, H2SO4-independent process of particle (nano-CN) formation was observed in the case of α-pinene and limonene ozonolysis for H2SO4 concentrations smaller than ~10 7 molecule cm−3. Furthermore, the findings confirm the existence of an additional oxidant for SO2 beside OH radicals, very likely stabilized Criegee Intermediate (sCI). In the case of the ozonolysis of tetramethylethylene, the H2SO4 measurements in the absence and presence of an OH radical scavenger were well described by modelling using recently obtained kinetic data for the sCI reactivity in this system. A second set of experiments has been performed in the presence of added amines (trimethylamine, dimethylamine, aniline and pyridine) in the concentration range of a few 107–1010 molecule cm−3. Here, photolytic OH radical generation was applied for H2SO4 production with no addition of other organics. All amines showed a significant nucleation enhancement with increasing efficiency in the order pyridine < aniline < dimethylamine < trimethylamine. This result supports the idea of H2SO4 cluster stabilization by amines due to strong H2SO4 ↔ amine interactions. On the other hand, this study reveals that for organic oxidation products (in presence of the possible amine background as stated) a distinct H2SO4/H2O nucleation enhancement can be due to increased H2SO4 formation caused by additional organic oxidant production (sCI) rather than by stabilization of H2SO4 clusters due to H2SO4 ↔ organics interactions.

However, because the molecular composition of nucleating clusters was not measured, the role of any background substances, unavoidably present in any system, to experimental data remains unclear. Also the experimental conditions do not cover fully the range of atmospheric observations, e.g., the concentration of precursor vapours represents rather the upper end of the atmospheric range. More experimental work is needed before definite conclusions about the nucleation mechanisms in the atmosphere can be drawn.

Citation: Berndt, T., Sipilä, M., Stratmann, F., Petäjä, T., Vanhanen, J., Mikkilä, J., Patokoski, J., Taipale, R., Lee Mauldin III, R., and Kulmala, M.: Enhancement of atmospheric H2SO4/H2O nucleation: organic oxidation products versus amines, Atmos. Chem. Phys. Discuss., 13, 16301-16335, doi:10.5194/acpd-13-16301-2013, 2013.
Search ACPD
Discussion Paper
    Final Revised Paper