Atmos. Chem. Phys. Discuss., 13, 11745-11788, 2013
www.atmos-chem-phys-discuss.net/13/11745/2013/
doi:10.5194/acpd-13-11745-2013
© Author(s) 2013. This work is distributed
under the Creative Commons Attribution 3.0 License.
Review Status
This discussion paper has been under review for the journal Atmospheric Chemistry and Physics (ACP). Please refer to the corresponding final paper in ACP.
Sources and photochemistry of volatile organic compounds in the remote atmosphere of western China: results from the Mt. Waliguan Observatory
L. K. Xue1,2, T. Wang1,2, H. Guo1, D. R. Blake3, J. Tang4, X. C. Zhang4, S. M. Saunders5, and W. X. Wang2
1Department of Civil and Environmental Engineering, the Hong Kong Polytechnic University, Hong Kong, China
2Environmental Research Institute, Shandong University, Ji'nan, Shandong, China
3Department of Chemistry, University of California at Irvine, Irvine, CA, USA
4Center for Atmosphere Watch and Services, Key Laboratory for Atmospheric Chemistry, Chinese Academy of Meteorological Sciences, Beijing, China
5School of Chemistry and Biochemistry, the University of Western Australia, WA, Australia

Abstract. The chemistry of the natural atmosphere and the influence by long-range transport of air pollution are key issues in the atmospheric sciences. Here we present two intensive field measurements of volatile organic compounds (VOCs) in late spring and summer of 2003 at Mt. Waliguan (WLG, 36.28° N, 100.90° E, 3816 m a.s.l.), a baseline station in the northeast part of Qinghai-Tibetan Plateau. Most VOC species exhibited higher concentrations in late spring than in summer. A typical diurnal variation was observed with higher nighttime levels, in contrast to results from other mountainous sites. Five different air masses were identified from backward trajectory analysis showing distinct VOC speciation. Air masses originating from the central Eurasian continent contained the lowest VOC levels compared to the others that were impacted by anthropogenic emissions from China and the Indian sub-continent. The data were compared with the TRACE-P (Transport and Chemical Evolution over the Pacific) data to examine the inflow and outflow of air pollution over the China sub-continent. The results show that the free troposphere over China may be affected by the inflow from the Eurasian continent in spring, and the emissions in China may not have a significant influence on the free tropospheric outflow. A photochemical box model based on the Master Chemical Mechanism (version 3.2) and constrained by a full suite of measurements was developed to probe the photochemistry of atmosphere at WLG. Our results show net ozone production from in-situ photochemistry during both late spring and summer. Oxidation of nitric oxide (NO) by the hydroperoxyl radical (HO2) dominates the ozone production relative to the oxidation by the organic peroxy radicals (RO2), and the ozone is primarily destroyed by photolysis and reactions with the HOx(HOx = OH + HO2) radicals. Ozone photolysis is the predominant primary source of radicals (ROx = OH + HO2 + RO2), followed by the photolysis of oxygenated VOCs and hydrogen peroxides. The radical losses are governed by the self and cross reactions among the radicals. The findings can provide insights into the background chemistry and the impacts of pollution transport on the pristine atmosphere over the Eurasian continent.

Citation: Xue, L. K., Wang, T., Guo, H., Blake, D. R., Tang, J., Zhang, X. C., Saunders, S. M., and Wang, W. X.: Sources and photochemistry of volatile organic compounds in the remote atmosphere of western China: results from the Mt. Waliguan Observatory, Atmos. Chem. Phys. Discuss., 13, 11745-11788, doi:10.5194/acpd-13-11745-2013, 2013.
 
Search ACPD
Discussion Paper
    XML
    Citation
    Final Revised Paper
    Share