Atmos. Chem. Phys. Discuss., 13, 11473-11507, 2013
www.atmos-chem-phys-discuss.net/13/11473/2013/
doi:10.5194/acpd-13-11473-2013
© Author(s) 2013. This work is distributed
under the Creative Commons Attribution 3.0 License.
Review Status
This discussion paper has been under review for the journal Atmospheric Chemistry and Physics (ACP). Please refer to the corresponding final paper in ACP.
A global tropospheric ozone climatology from trajectory-mapped ozone soundings
G. Liu1,*, J. J. Liu2, D. W. Tarasick1, V. E. Fioletov1, J. J. Jin3,**, O. Moeni3, X. Liu4, and C. E. Sioris1
1Air Quality Research Division, Environment Canada, 4905 Dufferin Street, Downsview, ON M3H 5T4, Canada
2Department of Geography and Planning, University of Toronto, 100 St. George Street, Toronto, ON M5S 3G3, Canada
3Department of Earth and Space Science and Engineering, York University, Toronto, ON M3J 1P3, Canada
4Harvard-Smithsonian Center for Astrophysics, Cambridge, MA, 21250, USA
*now at: Space Sciences Laboratory, University of California, Berkeley, CA, 94720, USA
**now at: GESTAR, Universities Space Research Association, Greenbelt, MD, 20771, USA

Abstract. A global three-dimensional (i.e. latitude, longitude, altitude) climatology of tropospheric ozone is derived from the ozone sounding record by trajectory mapping. Approximately 52 000 ozonesonde profiles from more than 100 stations worldwide since 1962 are used. The small number of stations causes the set of ozone soundings to be sparse in geographical spacing. Here, forward and backward trajectory calculations are performed for each sounding to map ozone measurements to a number of other locations, and so to fill in the spatial domain. This is possible because the lifetime of ozone in the troposphere is of the order of weeks. This physically-based interpolation method offers obvious advantages over typical statistical interpolation methods. The trajectory-mapped ozone values show reasonable agreement, where they overlap, to the actual soundings, and the patterns produced separately by forward and backward trajectory calculations are similar. Major regional features of the tropospheric ozone distribution are clearly evident in the global maps. An interpolation algorithm based on spherical functions is further used for smoothing and to fill in remaining data gaps. The resulting three-dimensional global tropospheric ozone climatology facilitates visualization and comparison of different years, decades, and seasons, and offers some intriguing insights into the global variation of tropospheric ozone. It will be useful for climate and air quality model initialization and validation, and as an a priori climatology for satellite data retrievals. Further division of the climatology into decadal averages provides a global view of tropospheric ozone trends, which appear to be surprisingly modest over the last four decades.

Citation: Liu, G., Liu, J. J., Tarasick, D. W., Fioletov, V. E., Jin, J. J., Moeni, O., Liu, X., and Sioris, C. E.: A global tropospheric ozone climatology from trajectory-mapped ozone soundings, Atmos. Chem. Phys. Discuss., 13, 11473-11507, doi:10.5194/acpd-13-11473-2013, 2013.
 
Search ACPD
Discussion Paper
    XML
    Citation
    Final Revised Paper
    Share