Atmos. Chem. Phys. Discuss., 12, 9985-10014, 2012
www.atmos-chem-phys-discuss.net/12/9985/2012/
doi:10.5194/acpd-12-9985-2012
© Author(s) 2012. This work is distributed
under the Creative Commons Attribution 3.0 License.
Review Status
This discussion paper has been under review for the journal Atmospheric Chemistry and Physics (ACP). Please refer to the corresponding final paper in ACP.
CO2 flux estimation errors associated with moist atmospheric processes
N. C. Parazoo1, A. S. Denning2, S. R. Kawa3, S. Pawson3, and R. Lokupitiya4
1Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
2Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado, USA
3NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
4Department of Statistics and Computer Science, University of Sri Jawawardenepura, Gangodawila, Nugegoda, Sri Lanka

Abstract. Vertical transport by moist sub-grid scale processes such as deep convection is a well-known source of uncertainty in CO2 source/sink inversion. However, a dynamical link between moist transport, satellite CO2 retrievals, and source/sink inversion has not yet been established. Here we examine the effect of moist processes on (1) synoptic CO2 transport by Version-4 and Version-5 NASA Goddard Earth Observing System Data Assimilation System (NASA-DAS) meteorological analyses, and (2) source/sink inversion. We find that synoptic transport processes, such as fronts and dry/moist conveyors, feed off background vertical CO2 gradients, which are modulated by sub-grid vertical transport. The implication for source/sink estimation is two-fold. First, CO2 variations contained in moist poleward moving air masses are systematically different from variations in dry equatorward moving air. Moist poleward transport is hidden from orbital sensors on satellites, causing a sampling bias, which leads directly to continental scale source/sink estimation errors of up to 0.25 PgC yr−1 in northern mid-latitudes. Second, moist processes are represented differently in GEOS-4 and GEOS-5, leading to differences in vertical CO2 gradients, moist poleward and dry equatorward CO2 transport, and therefore the fraction of CO2 variations hidden in moist air from satellites. As a result, sampling biases are amplified, causing source/sink estimation errors of up to 0.55 PgC yr−1 in northern mid-latitudes. These results, cast from the perspective of moist frontal transport processes, support previous arguments that the vertical gradient of CO2 is a major source of uncertainty in source/sink inversion.

Citation: Parazoo, N. C., Denning, A. S., Kawa, S. R., Pawson, S., and Lokupitiya, R.: CO2 flux estimation errors associated with moist atmospheric processes, Atmos. Chem. Phys. Discuss., 12, 9985-10014, doi:10.5194/acpd-12-9985-2012, 2012.
 
Search ACPD
Discussion Paper
    XML
    Citation
    Final Revised Paper
    Share