Atmos. Chem. Phys. Discuss., 12, 5817-5849, 2012
www.atmos-chem-phys-discuss.net/12/5817/2012/
doi:10.5194/acpd-12-5817-2012
© Author(s) 2012. This work is distributed
under the Creative Commons Attribution 3.0 License.
Review Status
This discussion paper has been under review for the journal Atmospheric Chemistry and Physics (ACP). Please refer to the corresponding final paper in ACP.
On the dependence of the OH* Meinel emission altitude on vibrational level: SCIAMACHY observations and model simulations
C. von Savigny1, I. C. McDade2, K.-U. Eichmann1, and J. P. Burrows1
1Institute of Environmental Physics, University of Bremen, Bremen, Germany
2Centre for Research in Earth and Space Science (CRESS) and Department of Earth and Space Science and Engineering (ESSE), York University, Toronto, Ontario, Canada

Abstract. Measurements of the OH Meinel emissions in the terrestrial nightglow are one of the standard ground-based techniques to retrieve upper mesospheric temperatures. It is often assumed that the emission peak altitudes are not strongly dependent on the vibrational level, although this assumption is not based on convincing experimental evidence. In this study we use Envisat/SCIAMACHY (Scanning Imaging Absorption spectroMeter for Atmospheric CHartographY) observations in the near-IR spectral range to retrieve vertical volume emission rate profiles of the OH(3-1), OH(6-2) and OH(8-3) Meinel bands in order to investigate, whether systematic differences in emission peak altitudes can be observed between the different OH Meinel bands. The results indicate that the emission peak altitudes are different for the different vibrational levels, with bands originating from higher vibrational levels having higher emission peak altitudes. It is shown that this finding is consistent with the majority of the previously published results. The SCIAMACHY observations yield differences in emission peak altitudes of up to about 4 km between the OH(3-1) and the OH(8-3) band.

The observations are complemented by model simulations of the fractional population of the different vibrational levels and of the vibrational level dependence of the emission peak altitude. The model simulations well reproduce the observed vibrational level dependence of the emission peak altitude – both qualitatively and quantitatively – if quenching by atomic oxygen as well as multi-quantum collisional relaxation by O2 is considered. If a linear relationship between emission peak altitude and vibrational level is assumed, then a peak altitude difference of roughly 0.5 km per vibrational level is inferred from both the SCIAMACHY observations and the model simulations.


Citation: von Savigny, C., McDade, I. C., Eichmann, K.-U., and Burrows, J. P.: On the dependence of the OH* Meinel emission altitude on vibrational level: SCIAMACHY observations and model simulations, Atmos. Chem. Phys. Discuss., 12, 5817-5849, doi:10.5194/acpd-12-5817-2012, 2012.
 
Search ACPD
Discussion Paper
    XML
    Citation
    Final Revised Paper
    Share