Atmos. Chem. Phys. Discuss., 12, 30989-31030, 2012
© Author(s) 2012. This work is distributed
under the Creative Commons Attribution 3.0 License.
Review Status
This discussion paper has been under review for the journal Atmospheric Chemistry and Physics (ACP). Please refer to the corresponding final paper in ACP.
Estimating regional methane surface fluxes: the relative importance of surface and GOSAT mole fraction measurements
A. Fraser1, P. I. Palmer1, L. Feng1, H. Boesch2, A. Cogan2, R. Parker2, E. J. Dlugokencky3, P. J. Fraser4, P. B. Krummel4, R. L. Langenfelds4, S. O'Doherty5, R. G. Prinn6, L. P. Steele4, M. van der Schoot4, and R. F. Weiss7
1School of GeoSciences, University of Edinburgh, Edinburgh, UK
2Earth Observation Science Group, Space Research Centre, University of Leicester, Leicester, UK
3US National Oceanic and Atmospheric Administration, Global Monitoring Division, Earth System Research Laboratory, Boulder, Colorado, USA
4Centre for Australian Weather and Climate Research, CSIRO Marine and Atmospheric Research, Aspendale, Victoria, Australia
5School of Chemistry, University of Bristol, Bristol, UK
6Center for Global Change Science, Department of Earth, Atmospheric, and Planetary Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
7Scripps Institution of Oceanography, UCSD, La Jolla, California, USA

Abstract. We use an ensemble Kalman filter (EnKF), together with the GEOS-Chem chemistry transport model, to estimate regional monthly methane (CH4) fluxes for the period June 2009–December 2010 using proxy dry-air column-averaged mole fractions of methane (XCH4) from GOSAT (Greenhouse gases Observing SATellite) and/or NOAA ESRL (Earth System Research Laboratory) and CSIRO GASLAB (Global Atmospheric Sampling Laboratory) CH4 surface mole fraction measurements. Global posterior estimates using GOSAT and/or surface measurements are between 510–516 Tg yr−1, which is less than, though within the uncertainty of, the prior global flux of 529 ± 25 Tg yr−1. We find larger differences between regional prior and posterior fluxes, with the largest changes (75 Tg yr−1) occurring in Temperate Eurasia. In non-boreal regions the error reductions for inversions using the GOSAT data are at least three times larger (up to 45%) than if only surface data are assimilated, a reflection of the greater spatial coverage of GOSAT, with the two exceptions of latitudes > 60° associated with a data filter and over Europe where the surface network adequately describes fluxes on our model spatial and temporal grid. We use CarbonTracker and GEOS-Chem XCO2 model output to investigate model error on quantifying proxy GOSAT XCH4 (involving model XCO2) and inferring methane flux estimates from surface mole fraction data and show similar resulting fluxes, with differences reflecting initial differences in the proxy value. Using a series of observing system simulation experiments (OSSEs) we characterize the posterior flux error introduced by non-uniform atmospheric sampling by GOSAT. We show that clear-sky measurements can theoretically reproduce fluxes within 5% of true values, with the exception of South Africa and Tropical South America where, due to a large seasonal cycle in the number of measurements because of clouds and aerosols, fluxes are within 17% and 19% of true fluxes, respectively. We evaluate our posterior methane fluxes by incorporating them into GEOS-Chem and sampling the model at the location and time of independent surface CH4 measurements from the AGAGE (Advanced Global Atmospheric Gases Experiment) network and column XCH4 measurements from TCCON (Total Carbon Column Observing Network). The posterior fluxes modestly improve the model agreement with AGAGE and TCCON data relative to prior fluxes, with the correlation coefficients (r2) increasing by a mean of 0.04 (range: −0.17, 0.23) and the biases decreasing by a mean of 0.4 ppb (range: −8.9, 8.4 ppb).

Citation: Fraser, A., Palmer, P. I., Feng, L., Boesch, H., Cogan, A., Parker, R., Dlugokencky, E. J., Fraser, P. J., Krummel, P. B., Langenfelds, R. L., O'Doherty, S., Prinn, R. G., Steele, L. P., van der Schoot, M., and Weiss, R. F.: Estimating regional methane surface fluxes: the relative importance of surface and GOSAT mole fraction measurements, Atmos. Chem. Phys. Discuss., 12, 30989-31030, doi:10.5194/acpd-12-30989-2012, 2012.
Search ACPD
Discussion Paper
    Final Revised Paper