Atmos. Chem. Phys. Discuss., 12, 30661-30754, 2012
© Author(s) 2012. This work is distributed
under the Creative Commons Attribution 3.0 License.
Review Status
This discussion paper has been under review for the journal Atmospheric Chemistry and Physics (ACP). Please refer to the corresponding final paper in ACP.
Reconciliation of essential process parameters for an enhanced predictability of Arctic stratospheric ozone loss and its climate interactions
M. von Hobe1, S. Bekki2, S. Borrmann3, F. Cairo4, F. D'Amato5, G. Di Donfrancesco32, A. Dörnbrack6, A. Ebersoldt7, M. Ebert8, C. Emde9, I. Engel10, M. Ern1, W. Frey3, S. Griessbach11, J.-U. Grooß1, T. Gulde12, G. Günther1, E. Hösen13, L. Hoffmann11, V. Homonnai14, C. R. Hoyle10, I. S. A. Isaksen15, D. R. Jackson16, I. M. Jánosi14, K. Kandler8, C. Kalicinsky13, A. Keil17, S. M. Khaykin18, F. Khosrawi19, R. Kivi20, J. Kuttippurath2, J. C. Laube21, F. Lefèvre2, R. Lehmann22, S. Ludmann23, B. P. Luo10, M. Marchand2, J. Meyer1, V. Mitev24, S. Molleker3, R. Müller1, H. Oelhaf12, F. Olschewski13, Y. Orsolini25, T. Peter10, K. Pfeilsticker23, C. Piesch12, M. C. Pitts26, L. R. Poole27,*, F. D. Pope28,**, F. Ravegnani4, M. Rex22, M. Riese1, T. Röckmann29, B. Rognerud15, A. Roiger6, C. Rolf1, M. L. Santee30, M. Scheibe6, C. Schiller1, H. Schlager6, M. Siciliani de Cumis5, N. Sitnikov18, O. A. Søvde15, R. Spang1, N. Spelten1, F. Stordal15, O. Sumińska-Ebersoldt1,12, S. Viciani5, C. M. Volk13, M. vom Scheidt13, A. Ulanovski18, P. von der Gathen22, K. Walker31, T. Wegner1, R. Weigel3, S. Weinbuch8, G. Wetzel12, F. G. Wienhold10, J. Wintel13, I. Wohltmann22, W. Woiwode11, I. A. K. Young28,**, V. Yushkov18, B. Zobrist10, and F. Stroh1
1Forschungszentrum Jülich, Institute for Energy and Climate Research (IEK-7), Jülich, Germany
2LATMOS-IPSL, UPMC Univ. Paris 06, Université Versailles St.-Quenitn; CNRS/INSU, Paris, France
3Max Planck Institute for Chemistry, Particle Chemistry Department, Mainz, Germany
4Institute of Atmospheric Science and Climate, ISAC-CNR, Rome, Italy
5CNR-INO (Istituto Nazionale di Ottica), Largo E. Fermi, 6, 50125 Firenze, Italy
6Institut für Physik der Atmosphäre, DLR Oberpfaffenhofen, Germany
7Institute for Data Processing and Electronics, Karlsruhe Institute of Technology, Karlsruhe, Germany
8Technische Universität Darmstadt, Institut für Angewandte Geowissenschaften, Umweltmineralogie, Darmstadt, Germany
9Meteorologisches Institut, Ludwig-Maximilians-Universität, München, Germany
10ETH Zurich, Institute for Atmospheric and Climate Science, Zurich, Switzerland
11Jülich Supercomputing Centre (JSC), Forschungszentrum Jülich GmbH, Germany
12Institute for Meteorology and Climate Research, Karlsruhe Institute of Technology, Karlsruhe, Germany
13Department of Physics, University of Wuppertal, Germany
14Department of Physics of Complex Systems, Eötvös Loránd University, Pázmány P. s. 1/A, 1117 Budapest, Hungary
15Department of Geosciences, University of Oslo, Oslo, Norway
16Met Office, Exeter, UK
17Institute for Atmospheric and Environmental Sciences, Goethe University Frankfurt, Frankfurt, Germany
18Central Aerological Observatory, Dolgoprudny, Moskow Region, Russia
19MISU, Stockholm University, Stockholm, Sweden
20Finnish Meteorological Institute, Arctic Research, Sodankylä, Finland
21University of East Anglia, School of Environmental Sciences, Norwich, UK
22Alfred Wegener Institute for Polar and Marine Research, Potsdam, Germany
23Institut für Umweltphysik, University of Heidelberg, Germany
24CSEM Centre Suisse d'Electronique et de Microtechnique SA, Neuchâtel, Switzerland
25Norwegian Institute for Air Research, Kjeller, Norway
26NASA Langley Research Center, Hampton, VA 23681, USA
27Science Systems and Applications, Inc. Hampton, VA 23666, USA
28University of Cambridge, Department of Chemistry, Cambridge, UK
29Institute for Marine and Atmospheric Research Utrecht (IMAU), Utrecht University, Utrecht, The Netherlands
30JPL/NASA, California Institute of Technology, Pasadena, California, USA
31Department of Physics, University of Toronto, Toronto, Canada
32Ente Nazionale per le Nuove tecnologie, l'Energia e l'Ambiente, Roma, Italy
*now at: School of Geography, Earth and Environmental Sciences, University of Birmingham, UK
**now at: The British Museum, London, UK

Abstract. Significant reductions in stratospheric ozone occur inside the polar vortices each spring when chlorine radicals produced by heterogeneous reactions on cold particle surfaces in winter destroy ozone mainly in two catalytic cycles, the ClO dimer cycle and the ClO/BrO cycle. Chlorofluorocarbons (CFCs), which are responsible for most of the chlorine currently present in the stratosphere, have been banned by the Montreal Protocol and its amendments, and the ozone layer is predicted to recover to 1980 levels within the next few decades. During the same period, however, climate change is expected to alter the temperature, circulation patterns and chemical composition in the stratosphere, and possible geo-engineering ventures to mitigate climate change may lead to additional changes. To realistically predict the response of the ozone layer to such influences requires the correct representation of all relevant processes. The European project RECONCILE has comprehensively addressed remaining questions in the context of polar ozone depletion, with the objective to quantify the rates of some of the most relevant, yet still uncertain physical and chemical processes. To this end RECONCILE used a broad approach of laboratory experiments, two field missions in the Arctic winter 2009/10 employing the high altitude research aircraft M55-Geophysica and an extensive match ozone sonde campaign, as well as microphysical and chemical transport modelling and data assimilation. Some of the main outcomes of RECONCILE are as follows: (1) vortex meteorology: the 2009/10 Arctic winter was unusually cold at stratospheric levels during the six-week period from mid-December 2009 until the end of January 2010, with reduced transport and mixing across the polar vortex edge; polar vortex stability and how it is influenced by dynamic processes in the troposphere has led to unprecedented, synoptic-scale stratospheric regions with temperatures below the frost point; in these regions stratospheric ice clouds have been observed, extending over >106km2 during more than 3 weeks. (2) Particle microphysics: heterogeneous nucleation of nitric acid trihydrate (NAT) particles in the absence of ice has been unambiguously demonstrated; conversely, the synoptic scale ice clouds also appear to nucleate heterogeneously; a variety of possible heterogeneous nuclei has been characterised by chemical analysis of the non-volatile fraction of the background aerosol; substantial formation of solid particles and denitrification via their sedimentation has been observed and model parameterizations have been improved. (3) Chemistry: strong evidence has been found for significant chlorine activation not only on polar stratospheric clouds (PSCs) but also on cold binary aerosol; laboratory experiments and field data on the ClOOCl photolysis rate and other kinetic parameters have been shown to be consistent with an adequate degree of certainty; no evidence has been found that would support the existence of yet unknown chemical mechanisms making a significant contribution to polar ozone loss. (4) Global modelling: results from process studies have been implemented in a prognostic chemistry climate model (CCM); simulations with improved parameterisations of processes relevant for polar ozone depletion are evaluated against satellite data and other long term records using data assimilation and detrended fluctuation analysis. Finally, measurements and process studies within RECONCILE were also applied to the winter 2010/11, when special meteorological conditions led to the highest chemical ozone loss ever observed in the Arctic. In addition to quantifying the 2010/11 ozone loss and to understand its causes including possible connections to climate change, its impacts were addressed, such as changes in surface ultraviolet (UV) radiation in the densely populated northern mid-latitudes.

Citation: von Hobe, M., Bekki, S., Borrmann, S., Cairo, F., D'Amato, F., Di Donfrancesco, G., Dörnbrack, A., Ebersoldt, A., Ebert, M., Emde, C., Engel, I., Ern, M., Frey, W., Griessbach, S., Grooß, J.-U., Gulde, T., Günther, G., Hösen, E., Hoffmann, L., Homonnai, V., Hoyle, C. R., Isaksen, I. S. A., Jackson, D. R., Jánosi, I. M., Kandler, K., Kalicinsky, C., Keil, A., Khaykin, S. M., Khosrawi, F., Kivi, R., Kuttippurath, J., Laube, J. C., Lefèvre, F., Lehmann, R., Ludmann, S., Luo, B. P., Marchand, M., Meyer, J., Mitev, V., Molleker, S., Müller, R., Oelhaf, H., Olschewski, F., Orsolini, Y., Peter, T., Pfeilsticker, K., Piesch, C., Pitts, M. C., Poole, L. R., Pope, F. D., Ravegnani, F., Rex, M., Riese, M., Röckmann, T., Rognerud, B., Roiger, A., Rolf, C., Santee, M. L., Scheibe, M., Schiller, C., Schlager, H., Siciliani de Cumis, M., Sitnikov, N., Søvde, O. A., Spang, R., Spelten, N., Stordal, F., Sumińska-Ebersoldt, O., Viciani, S., Volk, C. M., vom Scheidt, M., Ulanovski, A., von der Gathen, P., Walker, K., Wegner, T., Weigel, R., Weinbuch, S., Wetzel, G., Wienhold, F. G., Wintel, J., Wohltmann, I., Woiwode, W., Young, I. A. K., Yushkov, V., Zobrist, B., and Stroh, F.: Reconciliation of essential process parameters for an enhanced predictability of Arctic stratospheric ozone loss and its climate interactions, Atmos. Chem. Phys. Discuss., 12, 30661-30754, doi:10.5194/acpd-12-30661-2012, 2012.
Search ACPD
Discussion Paper
    Final Revised Paper