Atmos. Chem. Phys. Discuss., 12, 2891-2974, 2012
www.atmos-chem-phys-discuss.net/12/2891/2012/
doi:10.5194/acpd-12-2891-2012
© Author(s) 2012. This work is distributed
under the Creative Commons Attribution 3.0 License.
Review Status
This discussion paper has been under review for the journal Atmospheric Chemistry and Physics (ACP). Please refer to the corresponding final paper in ACP.
Development and chamber evaluation of the MCM v3.2 degradation scheme for β-caryophyllene
M. E. Jenkin1, K. P. Wyche2, C. J. Evans3, T. Carr2, P. S. Monks2, M. R. Alfarra4,5, M. H. Barley5, G. B. McFiggans5, J. C. Young6, and A. R. Rickard6,7,*
1Atmospheric Chemistry Services, Okehampton, Devon, EX20 1FB, UK
2Atmospheric Chemistry Group, Department of Chemistry, University of Leicester, Leicester, LE1 7RH, UK
3Molecular Properties Group, Department of Chemistry, University of Leicester, Leicester, LE1 7RH, UK
4National Centre for Atmospheric Science (NCAS), School of Earth Atmospheric and Environmental Sciences, University of Manchester, M13 9PL, UK
5Centre for Atmospheric Science, School of Earth Atmospheric and Environmental Sciences, University of Manchester, M13 9PL, UK
6School of Chemistry, University of Leeds, LS2 9JT, UK
7National Centre for Atmospheric Science (NCAS), School of Chemistry, University of Leeds, LS2 9JT, UK
*now at: National Centre for Atmospheric Science (NCAS), Department of Chemistry, University of York, Heslington, York YO10 5DD, UK

Abstract. A degradation mechanism for β-caryophyllene has recently been released as part of version 3.2 of the Master Chemical Mechanism (MCM v3.2), describing the gas phase oxidation initiated by reaction with ozone, OH radicals and NO3 radicals. A detailed overview of the construction methodology is given, within the context of reported experimental and theoretical mechanistic appraisals. The performance of the mechanism has been evaluated in chamber simulations in which the gas phase chemistry was coupled to a representation of the gas-to-aerosol partitioning of 280 multi-functional oxidation products. This evaluation exercise considered data from a number of chamber studies of either the ozonolysis of β-caryophyllene, or the photo-oxidation of β-caryophyllene/NOx mixtures, in which detailed product distributions have been reported. This includes the results of a series of photo-oxidation experiments performed in the University of Manchester aerosol chamber, also reported here, in which a comprehensive characterization of the temporal evolution of the organic product distribution in the gas phase was carried out, using Chemical Ionisation Reaction Time-of-Flight Mass Spectrometry (CIR-TOF-MS), in conjunction with measurements of NOx, O3 and SOA mass loading. The CIR-TOF-MS measurements allowed approximately 45 time-resolved product ion signals to be detected, which were assigned on the basis of the simulated temporal profiles of the more abundant MCM v3.2 species, and their probable fragmentation patterns. The evaluation studies demonstrate that the MCM v3.2 mechanism provides a generally acceptable description of β-caryophyllene degradation, under the chamber conditions considered, and a reliable basis for simulations where a representation of chemical detail is required. The studies have also highlighted a number of areas of uncertainty, where further investigation would be valuable to help interpret the results of chamber studies and improve detailed mechanistic understanding. These particularly include: (i) quantification of the yield and stability of the secondary ozonide (denoted BCSOZ in MCM v3.2), formed from β-caryophyllene ozonolysis, and elucidation of the details of its further oxidation, including whether the products retain the "ozonide" functionality; (ii) investigation of the impact of NOx on the β-caryophyllene ozonolysis mechanism, in particular its effect on the formation of β-caryophyllinic acid (denoted C137CO2H in MCM v3.2), and elucidation of its formation mechanism; (iii) routine independent identification of β-caryophyllinic acid, and its potentially significant isomer β-nocaryophyllonic acid (denoted C131CO2H in MCM v3.2); (iv) more precise quantification of the primary yield of OH (and other radicals) from β-caryophyllene ozonolysis; (v) quantification of the yields of the first-generation hydroxy nitrates (denoted BCANO3, BCBNO3 and BCCNO3 in MCM v3.2) from the OH-initiated chemistry in the presence of NOx; and (vi) further studies in general to improve the identification and quantification of products formed from both ozonolysis and photo-oxidation, including confirmation of the simulated formation of multifunctional species containing hydroperoxide groups, and their important contribution to SOA under NOx-free conditions.

Citation: Jenkin, M. E., Wyche, K. P., Evans, C. J., Carr, T., Monks, P. S., Alfarra, M. R., Barley, M. H., McFiggans, G. B., Young, J. C., and Rickard, A. R.: Development and chamber evaluation of the MCM v3.2 degradation scheme for β-caryophyllene, Atmos. Chem. Phys. Discuss., 12, 2891-2974, doi:10.5194/acpd-12-2891-2012, 2012.
 
Search ACPD
Discussion Paper
    XML
    Citation
    Final Revised Paper
    Share