Atmos. Chem. Phys. Discuss., 12, 26647-26684, 2012
www.atmos-chem-phys-discuss.net/12/26647/2012/
doi:10.5194/acpd-12-26647-2012
© Author(s) 2012. This work is distributed
under the Creative Commons Attribution 3.0 License.
Review Status
This discussion paper has been under review for the journal Atmospheric Chemistry and Physics (ACP). Please refer to the corresponding final paper in ACP.
Environmental impacts of shipping in 2030 with a particular focus on the Arctic region
S. B. Dalsøren1, B. H. Samset1, G. Myhre1, J. J. Corbett2, R. Minjares3, D. Lack4,5, and J. S. Fuglestvedt1
1CICERO, Center for International Climate and Environmental Research Oslo, Norway
2College of Earth, Ocean, and Atmosphere, University of Delaware, Newark, USA
3The International Council on Clean Transportation, San Francisco, USA
4NOAA Earth System Research Laboratory, Chemical Sciences Division, Boulder, USA
5Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, USA

Abstract. We quantify the concentrations change of atmospheric pollutants and Radiative Forcing (RF) of short-lived components due to shipping emissions of NOx, SOx, CO, NMVOCs, BC and OC. A set of models is used to evaluate the period 2004–2030. This time period reflects expected increasing traffic in the Arctic region. Two datasets for ship emissions are used that may characterize the potential impact from shipping and the degree to which shipping controls may mitigate impacts: A high (HIGH) scenario and a low scenario with Maximum Feasible Reduction (MFR) of black carbon in the Arctic. In MFR, BC emissions in the Arctic are reduced with 70% representing a combination technology performance and/or reasonable advances in single-technology performance. Both scenarios result in moderate to substantial increases in concentrations of pollutants both globally and in the Arctic. Exceptions are black carbon in the MFR scenario, and sulfur species and organic carbon in both scenarios due to the future phase-in of current regulation that reduces fuel sulfur content. In the season with potential transit traffic through the Arctic in 2030 significant increases occur for all pollutants in large parts of the Arctic. Net global RFs from 2004–2030 of 53 mW m−2 (HIGH) and 73 mW m−2 (MFR) are similar to those found for preindustrial to present net global aircraft RF. The found warming contrasts the cooling from historical ship emissions. The reason for this difference and the higher global forcing for the MFR scenario is mainly the reduced future fuel sulfur content resulting in less cooling from sulfate aerosols. Arctic regional forcing is largest in the HIGH scenario because other components become locally more important in polar latitudes. In the HIGH scenario ozone dominates the RF during Arctic summer and the transit season. RF due to BC in air, and snow and ice becomes of significance in Arctic spring. For the HIGH scenario the net Arctic RF during spring is 5 times higher than in winter.

Citation: Dalsøren, S. B., Samset, B. H., Myhre, G., Corbett, J. J., Minjares, R., Lack, D., and Fuglestvedt, J. S.: Environmental impacts of shipping in 2030 with a particular focus on the Arctic region, Atmos. Chem. Phys. Discuss., 12, 26647-26684, doi:10.5194/acpd-12-26647-2012, 2012.
 
Search ACPD
Discussion Paper
    XML
    Citation
    Final Revised Paper
    Share