Atmos. Chem. Phys. Discuss., 12, 26401-26434, 2012
www.atmos-chem-phys-discuss.net/12/26401/2012/
doi:10.5194/acpd-12-26401-2012
© Author(s) 2012. This work is distributed
under the Creative Commons Attribution 3.0 License.
Review Status
This discussion paper has been under review for the journal Atmospheric Chemistry and Physics (ACP). Please refer to the corresponding final paper in ACP.
Effects of internal mixing and aggregate morphology on optical properties of black carbon using a discrete dipole approximation model
B. Scarnato1,2,*, S. Vahidinia3, D. T. Richard4, and T. W. Kirchstetter5,6
1Bay Area Environmental Research Institute, Sonoma, CA, USA
2NASA Ames Research Center, Moffett Field, California, USA
3Oak Ridge Associated Universities, NASA Ames Research Center, MS 245-5, Moffett Field, CA 94035-1000, USA
4Lawrence Livermore National Laboratory, 7000 East Ave, Livermore, CA 94550, USA
5Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
6Department of Civil and Environmental Engineering, University of California, Berkeley, CA 94720-1710, USA
*currently at: Dept. of Meteorology, Naval Postgraduate School, Monterey, CA 93943, USA

Abstract. According to recent studies, internal mixing of black carbon (BC) with other aerosol materials in the atmosphere alters its aggregate shape, absorption of solar radiation, and radiative forcing. These mixing state effects are not yet fully understood. In this study, we characterize the morphology and mixing state of bare BC and BC internally mixed with sodium chloride (NaCl) using electron microscopy and examine the sensitivity of optical properties to BC mixing state and aggregate morphology using a discrete dipole approximation model (DDSCAT). DDSCAT predicts a higher mass absorption coefficient, lower single scattering albedo (SSA), and higher absorption Angstrom exponent (AAE) for bare BC aggregates that are lacy rather than compact. Predicted values of SSA at 550 nm range between 0.18 and 0.27 for lacy and compact aggregates, respectively, in agreement with reported experimental values of 0.25 ± 0.05. The variation in absorption with wavelength does not adhere precisely to a power law relationship over the 200 to 1000 nm range. Consequently, AAE values depend on the wavelength region over which they are computed. In the 300 to 550 nm range, AAE values ranged in this study from 0.70 for compact to 0.95 for lacy aggregates. The SSA of BC internally mixed with NaCl (100–300 nm in radius) is higher than for bare BC and increases with the embedding in the NaCl. Internally mixed BC SSA values decrease in the 200–400 nm wavelength range, a feature also common to the optical properties of dust and organics. Linear polarization features are also predicted in DDSCAT and are dependent on particle morphology. The bare BC (with a radius of 80 nm) presents in the linear polarization a bell shape feature, which is a characteristic of the Rayleigh regime (for particles smaller than the wavelength of incident radiation). When BC is internally mixed with NaCl (100–300 nm in radius), strong depolarization features for near-VIS incident radiation are evident, such as a decrease in the intensity and multiple modes at different angles corresponding to different mixing states.

DDSCAT, being flexible on the geometry and refractive index of the particle, can be used to study the effect of mixing state and complex morphology on optical properties of realistic BC aggregates. This study shows that DDSCAT predicts morphology and mixing state dependent optical properties that have been reported previously and are relevant to radiative transfer and climate modeling and interpretation of remote sensing measurements.


Citation: Scarnato, B., Vahidinia, S., Richard, D. T., and Kirchstetter, T. W.: Effects of internal mixing and aggregate morphology on optical properties of black carbon using a discrete dipole approximation model, Atmos. Chem. Phys. Discuss., 12, 26401-26434, doi:10.5194/acpd-12-26401-2012, 2012.
 
Search ACPD
Discussion Paper
    XML
    Citation
    Final Revised Paper
    Share